
THE LISTENER IN LANGUAGE CHANGE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF LINGUISTICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Simon John Todd

June 2019



Abstract

Language changes constantly, in ways that can be influenced by factors both language-

internal, such as word frequency, and language-external, such as social organization

and attitudes. A major challenge for linguistic theory is to give a unified explana-

tion of these constraints on language change. In this dissertation, I argue that this

challenge can be addressed by looking to spoken language perception, where passive

but powerful perceptual biases give rise to many similar constraints on how listeners

update the cognitive representations they draw upon for language use.

I present an approach to language change in which perceptual biases in the listener

play a central role. I ground this approach in an exemplar-based computational

model, which is able to recreate empirically-observed general properties of sound

change. I then test the approach by integrating experimentally-supported perceptual

biases with computational modeling and novel corpus methods across two studies. In

the first study, I apply the computational model to simulate word-frequency effects

in sound change. I show that different word-frequency effects in different kinds of

sound change follow from a single perceptual bias, whereby high-frequency words

are recognized more easily than low-frequency words when acoustically ambiguous.

In the second study, I extend the listener-based approach to the effect of improving

interethnic social attitudes on the spread of lexical items across ethnic groups in

New Zealand. Drawing on biases in the perception of ‘other-accented’ words, I make

specific predictions for the spread of the tag eh from indigenous Māori to White

Pākehā, which I test with novel corpus methods. Taken together, these two studies

highlight how passive but powerful perceptual biases in the listener can give a unified

explanation of different constraints on language change.
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Chapter 1

Introduction

This dissertation is about language change. Understanding language change is im-

portant for two main reasons. Firstly, change is inherent to the nature of language,

as languages are constantly changing. Secondly, change is ‘nature’s laboratory’; just

as Darwinian evolution does for biological entities, language change reveals the fac-

tors that are of fundamental importance in giving language its unique shape. The

branches of linguistics that are most deeply concerned with language change, histori-

cal linguistics and sociolinguistics, have revealed that it is influenced by factors both

language-internal, such as how often a word is used, and language-external, such as

social organization and attitudes. A major challenge for linguistic theory is to explain

both how these different influences work independently, and how they fit together in

the complex system of language change.

In meeting this challenge, it is important to ask not just what happens when

language changes, but also how and why language changes. By asking how and

why, we can address longstanding issues concerning the asymmetry and timing of

change. For example, how and why does change spread through some words or some

groups of speakers faster than others (e.g. for words: Hay & Foulkes, 2016; Hay,

Pierrehumbert, Walker, & LaShell, 2015; for speakers: Labov, 1963, 1972)? How and

1



CHAPTER 1. INTRODUCTION 2

why is a given instance of language change triggered when it is, and not earlier or later

(Weinreich, Labov, & Herzog, 1968)? To answer these questions – and to ultimately

arrive at a satisfying unified explanation of language-internal and -external influences

on language change – it is necessary to focus not on the outcomes of language change,

but rather on the process by which language changes.

The traditional approach to the process of language change dates back to Hermann

Paul in the late 19th century and attributes a primary role to child language learners

(see e.g. Lightfoot & Westergaard, 2007; Weinreich et al., 1968). According to this

approach, language changes cross-generationally through the iterated application of

learning biases that structure ‘errors’ in language acquisition. In effect, the child

language learner filters variation in the ambient language environment, magnifying

components of this variation that resonate with learning biases and reducing com-

ponents that do not. This approach has allowed enormous empirical advances, such

as the synchronic study of language change-in-progress through the apparent time

construct (e.g. Cukor-Avila & Bailey, 2013), and the modeling of the development

of linguistic structure in longer-term language evolution both computationally (e.g.

Nowak & Krakauer, 1999) and experimentally (e.g. Kirby, Cornish, & Smith, 2008).

However, recent work has made it clear that a focus on the learner does not offer

a complete explanation for the process of language change, as an individual’s lan-

guage continues to change throughout their lifetime.1 These changes are most easily

demonstrated at the phonetic level. For example, adults who relocate or otherwise

encounter large numbers of speakers of a different dialect throughout a sustained pe-

riod post-adolescence may exhibit robust changes in accent (Evans & Iverson, 2007;

Munro, Derwing, & Flege, 1999). Similarly, adults who remain in one community

1Of course, change in adults arises because they continue to learn throughout the lifetime.
Nevertheless, I choose not to label adults as ‘learners’ so as to avoid potential confusion with child
language acquisition. My alternative terminology is intended to highlight the ways in which the
present proposal deviates from the longstanding tradition in the theoretical literature.
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may continue to participate in sound change that community exhibits (Harrington,

2006; Harrington, Palethorpe, & Watson, 2000; Sankoff & Blondeau, 2007). By way of

computational modeling, Stanford and Kenny (2013) even suggest that the signature

of language change-in-progress – age-graded language variation – may be attributable

to a single mechanism of linguistic diffusion that applies equally to adults and chil-

dren, without the need for additional special mechanisms related to child language

acquisition.

To account for language change throughout the lifetime, it is necessary to adopt

a perspective that focuses on adult language users, i.e. on the speaker and/or the

listener.2 In keeping with the highlights of the traditional learner-based approach, the

speaker-/listener-based perspective explains the process of language change through

biases that structure the production and/or uptake of language variation. However,

these biases are activated by in-the-moment communication between adults, rather

than by language learning in children.

Under an approach to language change that focuses on in-the-moment variable

language usage by adults, it is likely that biases of both the speaker and the listener

are relevant. However, much work in this area focuses exclusively on the speaker. For

example, H&H theory (Lindblom, 1990) and its modern descendants (Buz, Tanen-

haus, & Jaeger, 2016) posit that speakers modulate their speech signal in order to

ensure that they are understood by listeners, which means producing highly pre-

dictable words differently than unpredictable words (in context). Similarly, theories

related to audience design (Bell, 2001) posit that speakers modulate their manner

of linguistic presentation in order to evoke certain social evaluations from, and build

solidarity with, their listeners.

2The focus on the speaker and/or listener need not supplant the focus on the learner – as it re-
mains likely that the child language learner plays an important part in structuring cross-generational
language change – but should at least find a place alongside it in theories about the process by which
language changes.
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It is clear that speaker-based biases exist: speakers can and do modulate their

speech for reasons such as comprehensibility or social appearance. However, it also

seems clear that intention plays a large role in this modulation, and that speakers

often do not modulate their speech in this way, even in experimental situations where

the value of modulation is both heightened and made salient (e.g. Arnold, Wasow,

Asudeh, & Alrenga, 2004; Bard et al., 2000). On this basis, it seems questionable to

view speaker-based biases as exclusively central to the process of language change.

The driving of change by biases that arguably rely on intention is at odds with the fact

that many cases of language change proceed below the level of consciousness (Labov,

2001). Furthermore, the effect of any such biases is typically small relative to natural

variation in speech, and there is presumably a minimum degree of consistency with

which small biases need to apply in order to drive large-scale change. If active and

sporadic speaker-based biases play a role in language change, then it is reasonable to

assume that they do so primarily against a background provided by other, passive

and constant biases.

I argue that listener-based biases provide such a background, and therefore that

the listener deserves consideration as a central component of the process of language

change. Since many listener-based biases are developed by the cognitive system as

a means of efficiently extracting linguistic and social information from a spoken ut-

terance (Sumner, Kim, King, & McGowan, 2014), they can apply without intention

or even awareness. They are also difficult to consciously disable, and apply more of-

ten that speaker-based biases simply because people spend more time listening than

speaking (see e.g. Emanuel et al., 2008, and references therein). Listener-based biases

have a direct link to linguistic behavior, because speech that is listened to is stored

in memory (Goldinger, 1996) and can affect future speech production and percep-

tion (see e.g. for production: Fowler, Brown, Sabadini, & Weihing, 2003; Goldinger,
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1998; Nielsen, 2011; Pardo, 2006; and for perception: Bradlow & Bent, 2008; Clarke-

Davidson, Luce, & Sawusch, 2008; Dahan, Drucker, & Scarborough, 2008; Kraljic &

Samuel, 2006; Norris, McQueen, & Cutler, 2003). This link provides a clear process

through which listener-based biases can shape language change in both the individual

and the community, as the process of perceiving (spoken) language updates the cogni-

tive representations that may be drawn upon for producing language at later times.3

Through this process, listener-based biases have the potential to situate language-

internal and language-external influences on language change within a single unified

system, as many perceptual biases concerning both kinds of influence have been ex-

perimentally observed (see e.g. Connine, Titone, & Wang, 1993; Ganong, 1980; Hay &

Drager, 2010; Hay, Warren, & Drager, 2006; Kleinschmidt & Jaeger, 2015; Niedzielski,

1999; Pitt & Samuel, 1993; Strand & Johnson, 1996).

In this dissertation, I advance a listener-based approach to language change. I

ground this approach in the results of speech perception experiments, which have

revealed passive but powerful perceptual biases in the listener, and in the results

of corpus studies of language change, which have revealed structured patterns in

language change. I demonstrate plausible causal links between these perceptual biases

and empirical patterns of change through formal computational modeling, which I

then draw upon to support new empirical research of language change-in-progress.

To underline the generality of the listener-based approach and the potential it holds

for explaining the influences of both language-internal and language-external factors

on language change, I develop analyses for change at two different levels of linguistic

3In stating that production may draw upon the representations formed and updated through
perception, I emphasize the may. One interpretation of the link between production and perception
is that they access the same representational space, but this does not mean that they do so in
the same way. At a minimum, production accesses a smaller portion of the space than perception,
because the range of variation produced as a speaker is much smaller than the range of variation
perceived as a listener. While all perceptual experiences update the representational space, only
some of them do so in the portions accessed by production. Thus, only some perceptual experiences
have direct implications for later production.
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structure – the phonetics-phonology interface and the lexicon – under two different

kinds of influence – word frequency and social attitudes, respectively.

In Chapter 2, I implement the listener-based approach in a computational model

of regular sound change. In doing so, I formalize the representations and processes

that are involved in the approach, and I show how they work together to generate lan-

guage change. In particular, I show that the model is capable of generating changes

with properties seen empirically in corpus data from New Zealand English, which no

previous model has been able to do, and that this capability stems primarily from the

adoption of a heavy focus on the listener. I also discuss how the model clarifies key

distinctions between the listener-based approach developed in this dissertation, which

relies on perceptual biases, and the well-known previous listener-based approach de-

veloped by Ohala (1981), which relies on misperception. The model developed in this

chapter provides a formal foundation for predictions that specific perceptual biases

make about patterns of language change, which I explore in the later chapters.

In Chapter 3, I explore the potential of the listener-based approach for explaining

a particular language-internal influence on a particular kind of language change, the

effect of word frequency on rates of regular sound change. I consider a puzzle presented

by the three existing corpus studies of word frequency effects on rates of sound change,

which have each found different effects. I argue that a listener-based approach can

solve this puzzle, as the different effects correspond to different kinds of sound change,

with different implications for the listener. I extend the model developed in Chapter 2

to incorporate an experimentally-established perceptual bias relating word frequency

to word recognizability, and I show that this single bias generates all of the different

word frequency effects seen empirically. Crucially, by comparing the model results

to those obtained when certain processes in the speaker or listener are switched off,

I show that the listener plays a causal role in generating the word frequency effects,

and that the speaker plays only a minor facilitatory role. I conclude by discussing the
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implications of these results and the predictions they make for other kinds of regular

sound change.

Finally, in Chapter 4, I explore the potential of the listener-based approach for

explaining a particular language-external influence on a different kind of language

change, the effect of social attitudes on interethnic lexical adoption. I first show how

a listener-based approach can be extended to socially-distributed discrete linguistic

elements, and how it can draw upon experimentally-established perceptual biases as-

sociated with social information and attitudes. I then consider a puzzle presented

by previous corpus studies of the discourse tag eh in New Zealand, which is heav-

ily used by – and strongly associated with – indigenous Māori, but also used by

young White Pākehā (i.e. non-indigenous New Zealanders, typically of European de-

scent). Previous studies have disagreed whether the use of eh by young Pākehā is an

isolated age-graded phenomenon or whether it represents a larger language change-

in-progress whereby Pākehā in general are beginning to adopt eh from Māori. I argue

that a listener-based approach provides a solution to this puzzle, both by making

salient a way to disentangle the predictions of the age-grading and change-in-progress

hypotheses, and by giving a basis for actuation of change-in-progress in the per-

ceptual effects of recent improvements in Pākehā attitudes toward Māori. Through

using a new methodological tool in the study of a much larger corpus than previously

analyzed, I find support for the change-in-progress hypothesis, as well as evidence

that this change is associated with improvements in social attitudes, as predicted

by the listener-based approach. I conclude by discussing the general advantages of a

listener-based approach to social factors in language change, together with the general

predictions the approach makes for such cases.

I draw the three core chapters together in Chapter 5 by highlighting their major

theoretical and practical contributions and their implications for future work, both

narrowly within the study of language change, and more broadly across other subfields
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of linguistics. In doing so, I argue that a listener-based approach to language change

lays the foundation for a theory that can unify the influences of language-internal and

-external factors on language change.



Chapter 2

A listener-based model*

As described in Chapter 1, a listener-based approach to language change relies on the

notion that the process of perceiving language updates the cognitive representations

that may be drawn upon for producing language. In order to draw predictions for

change from this approach, it is necessary to formulate a model for how this process

of updating works. For the sake of understanding, this model need not capture the

exact, intricate details of the accessing and updating of linguistic representations;

rather, it should capture the broad strokes in as simple a way as possible. Maximal

clarity will be offered by a model that is computationally implemented, as such imple-

mentation forces assumptions and hypotheses about the representations and processes

involved in production and perception to be made explicit and precise, and allows

simulations to reveal concrete patterns of change that follow from these assumptions

and hypotheses.

In this chapter, I implement the listener-based approach in a computational model,

providing a foundation for predictions that specific perceptual biases make about

patterns of language change in Chapters 3 and 4. To do this, I first lay out the

*This chapter is based on work published as Todd, Pierrehumbert, and Hay (2019). The idea
of developing a model was initially proposed by my coauthors. The design, implementation, and
analysis of the model is primarily my own work, but it has benefited from the input of my coauthors.

9
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concrete focus of the model, on a particular kind of language change, and develop

desiderata for the simulations based on corpus evidence from New Zealand English

(Section 2.1). I then establish the theoretical and implementational framework of

the model at a high level (Section 2.2), before zooming in to lay out the details of

the representations and processes in the model (Section 2.3). Next, I show how the

processes work together to simulate regular sound change, and how the model can be

tuned to meet the desiderata (Section 2.4). Finally, I discuss the general advantages

offered by the computational implementation of a listener-based approach to language

change (Section 2.5).

2.1 Focus

For concreteness, the model in this chapter focuses on regular sound change, defined as

the gradual transformation of the phonetic realization of a phoneme over time (Labov,

2010). Within this realm, it focuses on simplified versions of two kinds of regular

sound change: phonetic drift, which involves isolated changes in the realizations of a

single phoneme; and push chains, which involve joint changes in the realizations of

two phonemes.

The focus on regular sound change makes the model directly applicable to the

effects of word frequency on rates of sound change (Chapter 3). Though the model

itself cannot be directly applied (as stated) to other kinds of language change, the

insight that it offers can be applied generally. It is this insight that provides a foun-

dation for understanding the effects of social attitudes on the adoption of a lexical

item across ethnic groups (Chapter 4).
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2.1.1 Why regular sound change?

Regular sound change is a good candidate for a listener-based model for three primary

reasons: (i) it can occur within an individual, across the lifespan; (ii) it has parallels

with synchronic phonetic accommodation; and (iii) it often proceeds below the level

of awareness, in a way that is not subject to individual control.

Firstly, regular sound change can occur within an individual, across the lifespan.

For example, Harrington et al. (2000) document changes in 10 of 11 monophthongal

vowels of Queen Elizabeth II over 50 years, and Harrington (2006) show that (at

least one of) these changes are above and beyond those expected based on age-related

factors. The fact that regular sound change can occur within the individual implies

that it is not solely driven by the child learner, through biases in language acquisition.

Instead, there is a clear role in regular sound change for the adult speaker or listener,

consistent with a listener-based approach.

Secondly, the diachronic phenomenon of regular sound change is paralleled by the

synchronic phenomenon of phonetic accommodation, whereby a speaker’s phonetic re-

alizations change on the basis of those they hear from others (e.g. Fowler et al., 2003;

Goldinger, 1998; Nielsen, 2011; Pardo, 2006). This parallelism is heightened by the

finding from the aforementioned studies (Harrington, 2006; Harrington et al., 2000)

that the Queen’s phonetic realizations changed over time to become more similar to

those of Standard Southern British, which is a prevalent variety. As in diachronic

sound change, there is evidence that synchronic accommodation is mediated by social

factors, but it appears to be mostly automatic (Dijksterhuis & Bargh, 2001; Picker-

ing & Garrod, 2004). For example, Babel (2010) found convergence across a range

of vowels for New Zealanders exposed to Australian speech, with more convergence

among participants that held positive attitudes toward Australia and less (but con-

vergence nevertheless) among those that held negative attitudes. The automaticity of
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phonetic accommodation implies a strong connection between the linguistic represen-

tations accessed during speech perception and speech production, and the parallelism

with regular sound change implies that this connection can have lasting diachronic

effects, as is expected from a listener-based approach.

Finally, and relatedly, regular sound change has been classified as beginning –

and often proceeding to completion – below the level of awareness (Labov, 1994).

This observation accords with an intuition that, in general, phonetic realization is

less subject to active speaker planning or strategizing than things like the choice or

arrangement of words. That is not to say that speakers cannot or do not manipulate

their phonetic realizations actively, for strategic reasons – many aspects of phonetic

variation have been analyzed to reflect speakers’ stylistic practice (e.g. Eckert, 2008;

Podesva, 2007) or communicative intent (e.g. Buz et al., 2016; Lindblom, 1990). How-

ever, it is not clear that speakers consistently exhibit such active design processes in

speech production; for example, Bard et al. (2000) observe that speakers reduce intel-

ligibility when repeating referring expressions, even when they know that the listener

has no knowledge of the referent. Conversely, the passive processes involved in speech

perception are automatic and inescapable; for example, it is impossible to listen to

someone speak without forming inferences and evaluations about who they are and/or

what the situation is (e.g. Sumner et al., 2014). Since a large component of regular

sound change occurs below the level of awareness, it is plausibly not a consequence

of active processes in the speaker, but rather a consequence of passive, automatic

processes in the listener, consistent with a listener-based approach.

2.1.2 Kinds of sound change modeled

The model in this chapter is designed to capture two kinds of regular sound change:

phonetic drift and push chains.

Phonetic drift involves the movement of a single phoneme representation in the
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acoustic space over time. Crucially, this movement is isolated with respect to other

phoneme representations in the acoustic space: it is not motivated by proximity to

another phoneme representation, nor does it result in encroachment on the acoustic

territory of another phoneme representation. In this way, the movement may be

considered to be caused by a bias that is external to the phoneme representation

itself, such as a production bias based in the reduction of articulatory effort or in

the identification with a particular social group. An example of phonetic drift is /t/-

glottaling in Manchester English (Bermúdez-Otero, Baranowski, Bailey, & Turton,

2015), where the phonetic realization of intervocalic /t/ has drifted to [P] over time.4

/t/-glottaling constitutes phonetic drift because it only affects /t/ and because it

produces realizations that remain unlike any other phoneme of English (as there is

no phoneme /P/).

Push chains involve the interaction of two phoneme representations, where one

moves in the acoustic space toward the other, which in turn moves away. The move-

ment of the first phoneme representation may be considered to be caused by an

external bias, like in phonetic drift. Unlike in phonetic drift, however, this movement

causes the first phoneme representation to encroach on the acoustic territory of the

second. The movement of the second phoneme representation, away from the first,

can therefore be considered to be motivated by this encroachment, rather than by

any external bias. Push chains – and their complements, pull chains – were first pos-

tulated by Martinet (1952), and have since been empirically observed in typologically

diverse languages ( Lubowicz, 2011). One example is the New Zealand short front

vowel shift (Gordon et al., 2004), in which the raising (and fronting) of /æ/ over time

4Realization of /t/ as [P] entails the removal of oral gestures. This phenomenon, also known
as glottal replacement, is common across British varieties of English and almost exclusively affects
/t/ (see e.g. Milroy, Milroy, Hartley, & Walshaw, 1994, for evidence from Tyneside English). It is
articulatorily and acoustically distinct from the application of glottal constriction to oral gestures
(glottal reinforcement), which more commonly affects /p/ and /k/.
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triggered the raising (and fronting) of /E/, and, in turn, the centralization of /I/.5

2.1.3 Model desiderata

To be of primary use in the study of regular sound change, the model must generate

phonetic drift and push chains that resemble empirical sound changes. That is, the

movement of phoneme representations generated by the model must display certain

key properties that are observed in corpus data. For present purposes, I assume that

these properties do not differ between phonetic drift and push chains (or other kinds

of regular sound change), and I infer them on the basis of data from the New Zealand

short front vowel shift.

The key properties relate to the maintenance of structure over the course of change.

As vowel distributions moved in the New Zealand short front vowel shift, they main-

tained their distance from one another, their shapes (width and skewness), and their

degree of overlap with one another. At all times, they exhibited little skewness and

substantial overlap relative to their widths; such properties are also seen in vowels

in American English (Hillenbrand, Getty, Clark, & Wheeler, 1995). I illustrate these

key properties for /æ/ and /E/ over a 60-year period of the data in Figure 2.1.

The basic desiderata for the model are therefore that it: (i) generates movement of

each phoneme representation; (ii) maintains the shape (width and skewness) of each

phoneme representation; and, in push chains, maintains the (iii) distance between and

(iv) overlap of the phoneme representations. To my knowledge, no other exemplar-

based model has met all these desiderata; see Section 2.2.2 for further discussion.

5Gordon et al. (2004) suggest that the New Zealand short front vowel shift may have begun
with the fronting of /a/. An acoustic study of the diachronic trajectory of /a/ has not yet been
conducted, but Hay et al. (2015) find indirect acoustic evidence to corroborate this suggestion: the
change in /æ/ is most advanced in words where the vowel precedes a voiced sound and is therefore
most similar in length to /a/ (Chen, 1970; Mack, 1982).
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Figure 2.1: Vowel distributions in New Zealand English over time. Centroids (points) and distribu-
tions (densities) for the F1 values of the bat (/æ/; red) and bet (/E/; blue) vowel categories for
speakers of New Zealand English born each decade from 1900 to 1959 (top to bottom), based on
the raw data from Hay et al. (2015). While the category centroids move over time, their distance
from one another stays approximately constant. The shapes (width and skewness) of the category
distributions also stay approximately constant over time, as does the substantial degree of overlap
between the two distributions.
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2.2 Framework

The model of regular sound change presented in this chapter is couched in the

framework of Exemplar Theory, according to which the cognitive representation of a

phoneme is made up of memories of experienced instances of that phoneme in words.

I do not intend the model to be interpreted as a claim about the nature of linguistic

representations, but rather as a convenient way to capture two ideas about linguistic

representations that are key to a listener-based approach: that they are shared across

production and perception; and that they are updated through perception.6 In doing

so, it allows perception to influence production, which is key to the central claim of

a listener-based approach.

In this section, I lay out Exemplar Theory, showing how it captures keys ideas for

the listener-based approach, and situate its motivation in historical developments in

the literature (Section 2.2.1). I then describe applications of exemplar-based models

to regular sound change in previous work, highlighting key results and challenges

(Section 2.2.2). Finally, I zoom out to formalize key concepts that describe how

exemplar-based models generate forces on the shape and position of linguistic repre-

sentations, through processes acting on individual exemplars (Section 2.2.3).

2.2.1 Exemplar Theory

Exemplar Theory claims that, in the individual’s cognitive system, linguistic represen-

tations – such as phonemes – are composed of memories of episodes where those rep-

resentations were externally instantiated – such as phonetic realizations of phonemes

6In the framework of Exemplar Theory, representations may be partially shared across produc-
tion and perception, meaning that only some representational updates through perception have an
impact on the representations accessed in production (see also Footnote 3 of Chapter 1). Neverthe-
less, when it comes to implementing a model in this framework, it is typically convenient to make
the simplifying assumption that representations are fully shared across production and perception,
meaning that every update through perception has an impact on production.
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(in uttered words).7 For example, the representation of the vowel /æ/ is made up

of memories of people saying [æ], in words like map, cat, and rag. These memories,

known as episodic traces or exemplars, are constantly being replaced as the individual

accumulates new experiences and forgets old ones. In this way, Exemplar Theory cap-

tures the first key idea of a listener-based approach to language change, which is that

linguistic representations are updated through perception. Furthermore, exemplars

are assumed to be recruited for both language production and language perception,

capturing the second key idea of a listener-based approach: that linguistic represen-

tations are shared across both production and perception. In this way, Exemplar

Theory allows perception to exhibit influences on production over time; in particular,

it supports the central claim of a listener-based approach, which is that perceptual

biases that treat linguistic experiences differentially in perception can give rise to

differential patterns of language change.

Exemplar Theory has its roots in a formal model of general perception from the

psychological literature, the Generalized Context Model (GCM; Nosofsky, 1986). The

GCM takes key ideas from the literatures on identification (discriminating a stimulus

from others that are similar) and categorization (grouping a stimulus with others

that are similar). From the identification literature, it takes the idea that perception

involves pinpointing a stimulus in a multidimensional perceptual space (Shepard,

1957). From the categorization literature, it takes the idea that perception involves

comparing a stimulus to exemplars of previously-experienced stimuli, stored in mem-

ory (Medin & Schaffer, 1978). It unifies these ideas by proposing that perceivers store

exemplars of stimuli in memory as they experience them, in a multidimensional per-

ceptual space, and recruit these exemplars directly in the perception (identification

and categorization) of future stimuli.

7Though I discuss only applications of Exemplar Theory to representations of phonemes, in
keeping with the present focus on regular sound change, it has been applied to representations of
other levels of linguistic structure as well (see e.g. Walsh, Möbius, Wade, & Schütze, 2010).
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The exemplar-based framework of the GCM was not developed with linguistic

perception in mind. However, it was soon shown to be valuable for speech perception

by Goldinger (1996), who found experimental evidence that listeners store richly-

detailed phonetic memories and draw upon them in lexical access. In Goldinger’s

(1996) experiments, participants first performed a study session, where they listened

to a set of words in multiple voices, and later – after a delay of up to a week –

performed a test session, in which some of the words were repeated (in the same

voice or in a different voice). Each participant performed one of two tasks, either

recognition memory or perceptual identification. In the recognition memory task,

the study session consisted of transcribing words in the clear, and the test session

consisted of a surprise recognition test where participants judged whether words had

been presented during study. In the perceptual identification task, both the study

and test sessions consisted of transcribing words in noise. Across both tasks, test

accuracy was higher for words repeated in the same voice than for words repeated in

a different voice, at delays of at least a day for recognition memory and at least a

week for perceptual identification. Furthermore, among words that were repeated in

a different voice, test accuracy increased with the similarity between test and study

voices. These results are predicted by the exemplar-based framework of the GCM:

listeners stored exemplars during the study session and (implicitly or explicitly) drew

upon them during the test session, gaining advantage the closer a relevant study

exemplar was to the test stimulus in a multidimensional perceptual-acoustic space.

Following Goldinger’s (1996) empirical demonstration of the value of an exemplar-

based framework for speech perception, Johnson (1997) adapted the GCM to a formal

exemplar model of speech perception. As a direct adaptation of the GCM, Johnson’s

(1997) model implies that linguistic representations are updated through perception,

capturing the first key idea of a listener-based approach. However, it says nothing of

the role of exemplars in speech production.
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The potential of an exemplar-based framework for speech production, capturing

connections between perception and production, was made explicit through shadow-

ing experiments by Goldinger (1998). These experiments consisted of interleaved lis-

tening blocks, in which participants listened to stimulus words or nonwords8 repeated

up to 12 times each, and shadowing blocks, in which participants listened to each stim-

ulus again and repeated it either immediately or after a 3–4 second delay. The results

concern reaction times – how quickly participants began responding – and imitation

– the degree to which responses were perceived to sound like the shadowed stimulus

(by separate participants, in AXB experiments). In immediate shadowing, stimuli

that had more repetitions in the listening block were associated with faster reaction

times and more imitation.9 The same effects were observed in delayed shadowing,

but were attenuated. Through simulation in an exemplar-based model10 (Hintzman,

1986), Goldinger (1998) shows that these results are predicted by an exemplar-based

framework that links production and perception. In the shadowing task, exemplars

are recruited according to how similar they are to the stimulus. Repetition in the

listening block creates additional exemplars that are (almost) identical to the stimu-

lus, and thus easily recruited. With more exemplars of this sort, the stimulus can be

recognized faster, which permits faster reaction time, and it exerts more influence on

the production target, which encourages imitation. Delay allows for the recruitment

of additional exemplars, which correspond to the stimulus in terms of lexical identity

but are acoustically dissimilar to it. These additional exemplars also exert influence

on the production target, counterbalancing the influence of the stimulus, and thus at-

tenuating the imitation effect. In further experiments, Goldinger (1998) also showed

8In experiments involving nonword stimuli, participants were trained on the nonwords the day
before, to build familiarity and establish an artificial lexicon.

9Goldinger (1998) also observed effects of lexical frequency, which are consistent with an
exemplar-based framework. For brevity and simplicity, I do not discuss these effects here.

10The framework of Hintzman (1986) is not the same as the GCM in its implementational details,
but it shares the high-level conceptual framework of exemplar-based models.
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that the reaction time and imitation effects are attenuated if stimuli are presented

in different voices in the listening block and shadowing block, drawing connections

with the exemplar-based framework of speech perception motivated in earlier work

(Goldinger, 1996).

To formally capture the connections between speech perception and speech pro-

duction in an exemplar-based framework, Pierrehumbert (2001) extended Johnson’s

(1997) model to claim that exemplars may be recruited in production as well as in

perception. This claim implies that linguistic representations are shared across pro-

duction and perception, capturing the second key idea of a listener-based approach.

In particular, production in Pierrehumbert’s (2001) model is based on sampling from

the exemplar distribution. If this sampling is not strategic in any way, production

will reflect perceptual influences, implying that biases in perception can give rise to

patterns of change, which is the central claim of a listener-based approach.

2.2.2 Insight from past models

Most formal exemplar-based models of regular sound change in the literature have

been developed to explore questions broadly related to contrast maintenance. For ex-

ample, some models have explored the conditions under which two phonemes can be

expected to merge or remain acoustically distinct (Pierrehumbert, 2001; Tupper, 2015;

Wedel, 2004, 2006; Wedel & Fatkullin, 2017). Others have explored the role of con-

trast maintenance in creating stable phonological inventories (Sóskuthy, 2013; Wedel,

2012), and how such stability promotes interlinked changes in different phonemes, as

in push chains (Wedel, 2012) and pull chains (Ettlinger, 2007). Since phonemic con-

trast is central to sound systems, both synchronically and diachronically, I focus here

on the highlights and challenges presented by models engaging with such questions.

One of the major highlights of past exemplar-based models is that the mainte-

nance of acoustic contrast can emerge from local competition between phonemes in
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the categorization of acoustically ambiguous signals (Sóskuthy, 2013; Tupper, 2015;

Wedel, 2004, 2006, 2012; Wedel & Fatkullin, 2017). For example, consider the situa-

tion illustrated in Figure 2.2, where there are just two phonemes of relevance, /s/ and

/S/, the representations of which overlap in acoustic space. Suppose a speaker intends

to say “sip” but utters [s
¯
Ip], with a retracted sibilant that falls in the region of acous-

tic overlap (arrow 1 in the figure). Absent any influences of context, a listener will

perceive this utterance as ambiguous, and may categorize it either as sip or as ship. If

the listener correctly categorizes the token as sip, then storing it as an exemplar will

strengthen the representation of /s/ in the region of acoustic overlap. However, if the

listener incorrectly categorizes the token as ship, then storing it as an exemplar will

instead strengthen the representation of /S/ in the region of acoustic overlap, thus

weakening the representation of /s/ in comparison. Now suppose a speaker utters

[sffIp], with a fronted sibilant that falls far from the region of acoustic overlap (arrow

2 in the figure). A listener will perceive this utterance as an unambiguous instance

of sip; thus, storing it as an exemplar will only ever strengthen the representation of

/s/ in the corresponding part of acoustic space. Since phoneme representations can

both strengthen and weaken in the region of acoustic overlap, but can only strengthen

outside of the region of overlap, representations tend to become stronger outside of

the region of overlap than within it. By consequence, phonemes tend to evacuate the

region of overlap over time, effectively repelling each other.

The mutual repulsion of phonemes is known as dispersion, and is a central com-

ponent of functionalist approaches to phonology (e.g. Flemming, 2004; Liljencrants

& Lindblom, 1972; Martinet, 1952). Exemplar-based models have contributed to

the theory of dispersion by demonstrating that it is a natural consequence of per-

ceptual competition between phonemes. Additionally, exemplar-based models have

highlighted that dispersion is extremely robust to modeling assumptions. Dispersion
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[sɪp]̠

/ʃ/ /s/
2

[sɪp]̟

1

ship sip sip

 ✓ ✓

Figure 2.2: Ambiguity and acoustic overlap. Suppose the speaker intends to produce an instance of
/s/, in the word sip. (1) If the speaker produces a token in the region of acoustic overlap between
/S/ and /s/, it may be miscategorized as ship. Storing the token as an exemplar may weaken the
representation of /s/ in the region of acoustic overlap. (2) If the speaker produces a token outside
of the region of acoustic overlap, it will always be correctly categorized as sip. Storing the token as
an exemplar will strengthen the representation of /s/ outside of the region of acoustic overlap.

has been observed in a wide range of exemplar-based models, regardless of assump-

tions about perception (e.g. whether categorization is probabilistic or deterministic),

memory (e.g. whether exemplars decay or are overwritten over time), and number of

interacting agents (see especially Sóskuthy, 2013).

Wedel and Fatkullin (2017) provide a useful analogy for understanding dispersion

in exemplar-based models. As the exemplars constituting phoneme representations

drift quasi-randomly about an acoustic space, they may encounter a wall through

which they cannot pass. Such a wall may be constituted by a categorization boundary

between two phonemes, or by an articulatory boundary representing limits on the

physical production of sounds (Sóskuthy, 2013). By virtue of random drift, phonemes

may move in any direction at any time. But since movements through a wall are

blocked, only movements away from it will be successful, making it increasingly likely

over time that the phoneme will move away from the wall.

Just as categorization of acoustically ambiguous stimuli leads to the movement of

phoneme representations under dispersion, exemplar-based models have shown that

any recurring process that distorts production or diminishes perception can lead to



CHAPTER 2. A LISTENER-BASED MODEL 23

the movement of phoneme representations. Sóskuthy (2013) provides a useful charac-

terization of how different processes interact, through forming an adaptive landscape

that defines the long-term states that are likely to arise from the corresponding move-

ments over time. In this characterization, a system of phoneme representations drifts

quasi-randomly about a state space, which corresponds to the joint position of the

phoneme representations in the acoustic space. The state space is overlaid with a

series of peaks and valleys, constructed by processes in production and perception. A

system of phoneme representations is more likely to drift downhill than uphill, and,

as time passes, is increasingly likely to settle in one of the valleys.

Sóskuthy’s (2013) characterization of adaptive landscapes shows how exemplar-

based models can be applied to both stability and dynamism in sound systems. If

the adaptive landscape is fixed, then – given enough time – phoneme representations

will settle into stable states in the valleys. However, if an external force causes the

adaptive landscape to change – for example, due to the introduction of a production

bias in one phoneme – then the valleys will move, and the phoneme representations

will move with them. In this vein, exemplar-based models have been successful in

demonstrating that the forced movement of one phoneme representation will trigger

movement of another, as in push chains (Wedel, 2012) and pull chains (Ettlinger,

2007).

One of the biggest challenges facing exemplar-based models is the maintenance

of acoustic overlap of phoneme representations in the face of dispersion and chain-

shifting. As explained above, the process of categorization shapes the adaptive land-

scape such that phoneme representations repel each other and evacuate any regions

of acoustic overlap over time. This is a problem because empirical studies have shown

that phoneme representations can and do overlap, at least at the population level; for

example, Hillenbrand et al. (1995) document extensive overlap of American English

vowels in the F1-F2 space, which causes a discriminative statistical model to obtain
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just 68.2% classification accuracy.11 Because dispersion is extremely robust to mod-

eling assumptions, this problem is pervasive; for example, Pierrehumbert (2002, p.

133) states that she “[has] not actually been able to find a parameter range for this

model which shows stable overlapping distributions”. It creates a major challenge for

meeting the present model desideratum of maintaining acoustic overlap of phoneme

representations.

Tupper (2015) shows that a promising strategy to meeting the desideratum of

overlap maintenance involves biasing tokens of each phoneme toward the other in

production, categorizing them probabilistically, and then not storing miscategorized

tokens as exemplars. This strategy can be illustrated by returning to the example

illustrated in Figure 2.2. Under this strategy, both ship and sip would be biased to

be produced somewhat like [s
¯
Ip] (arrow 1 in the figure). The resultant token would

be stored as an exemplar of /S/ only if the word ship fits the context, and as an

exemplar of /s/ only if the word sip fits the context. The production component of

this strategy ensures that phoneme representations do not drift away from each other,

and the perception (categorization/storage) component counteracts the weakening of

each representation in the region of acoustic overlap. However, the adaptive landscape

associated with this strategy is one in which phoneme representations have extremely

skewed acoustic distributions, because movement toward the categorization boundary

is easy, but movement through it is very difficult. Thus, the maintenance of acoustic

overlap of phoneme representations may come at the cost of changes to distributional

shape, counter to another desideratum of the present model. The joint maintenance

11Even when considering a higher-dimensional acoustic space – including dynamic measurements
of F0–F3, as well as duration – Hillenbrand et al. (1995) still observe overlap in vowel distributions
that limits their classification accuracy to 94.8%. Though this number may appear high, it is
important to point out that the tokens in question are taken from high-quality recordings of carefully-
articulated speech, which are likely much more precise than those that might be encountered in
everyday situations.
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of acoustic overlap and distributional shape remains a major challenge for exemplar-

based models.

The work outlined above is all concerned with the maintenance of acoustic con-

trast between phonemes, but exemplar models have also highlighted the assumptions

that lead to the loss of contrast, as in phoneme merger. Pierrehumbert (2001) devel-

oped an early model of merger, in which the loss of acoustic contrast was identified

with the extinction of a phoneme representation altogether. She argued that merger

followed from one phoneme representation leeching the other to extinction, due to

the combination of strong priming in production – where the probability of uttering

a given word is determined solely by the number of times it has been said recently –

and competition in perception – where an acoustically ambiguous token may be mis-

categorized and not stored as an exemplar of its source phoneme. However, Wedel

and Fatkullin (2017) show that extinction becomes vanishingly unlikely if production

is based not on strong priming but on externally-grounded lexical frequencies. Thus,

the extinction of a phoneme representation is an artifact of (overly) strong priming

mechanisms in production; without such mechanisms, the maintenance of acoustic

contrast between phonemes is the norm.12

A final highlight offered by past exemplar-based models concerns correspondences

between representations of words and phonemes. Intuitively, word representations

and phoneme representations have the same two basic needs: the representations of

two different words, or phonemes, should be acoustically contrastive; and every in-

stance of a given word, or phoneme, should be acoustically similar. Exemplar-based

models meet these needs by assuming that exemplars can be labeled for member-

ship in both word representations and phoneme representations, at the same time

12Merger remains a challenge for exemplar-based models, but it is not one that I will take up
here. Following other authors, I assume that merger results from extreme overlap between phoneme
representations (Sóskuthy, 2013; Wedel, 2004, 2012), which triggers reanalysis of the phoneme in-
ventory, or of the phonological form of lexical entries, between speakers or generations (Blevins,
2006; Harrington, Kleber, Reubold, Schiel, & Stevens, 2018).
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(Pierrehumbert, 2002). Given this assumption, acoustic contrast is maintained by

competition in categorization, as described previously. Acoustic similarity is main-

tained by incorporating references to other exemplars of the same word, or phoneme,

in production or perception; for example, in producing or perceiving the word sip,

multiple exemplars of sip may be referenced. Exemplar-based models have highlighted

the necessity of both word and phoneme representations: word representations are

necessary to allow for consistent differences according to properties such as lexical

frequency (see Chapter 3), while phoneme representations are necessary to ensure

acoustic similarity between instances of the same phoneme in different words (Wedel,

2012). In models developed to date, however, only a few word representations have

typically been included, all with similar lexical frequency; the modeling of a large

number of words, spanning a range of frequencies, remains an open challenge.

2.2.3 Formalizing key concepts

The previous two sections have informally introduced the notions of word/phoneme

representations and the adaptive landscape. In this section, I show how these notions

are formalized within exemplar-based models, and how they relate to processes in

production and perception, through the conceptualization of forces.

In exemplar-based models, word and phoneme representations are made up of

exemplars, which have acoustic values. Formally, then, word and phoneme represen-

tations can be understood as distributions over an acoustic space. Word representa-

tions are acoustic distributions formed by collecting different exemplars of that word.

Similarly, phoneme representations are acoustic distributions formed by collecting

different exemplars of that phoneme as it is instantiated in different words. The

storage of a new exemplar updates the distribution of acoustic values, and thus the

corresponding representations. In this way, processes acting on individual exemplars

aggregate to shape entire representations, in an emergent fashion.
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Given enough time, the shaping of representations by processes acting on indi-

vidual exemplars will lead to a stable state, where representations hardly change any

more. Reaching this stable state represents settling into a valley in the adaptive

landscape. From this insight, it follows that the adaptive landscape can be formed

by collecting all of the stable states that result from many different runs of the model

over a long period of time. Formally, it is obtained from the joint probability dis-

tribution over the acoustic space for the long-term location of the centroid of each

representation. While the adaptive landscape is a useful concept for thinking about

the long-term state of an exemplar-based model, it does not give much insight into the

path by which that long-term state is reached, as a direct consequence of short-term

processes acting on individual exemplars. To make the connection between short-term

processes and the long-term adaptive landscape, it is useful to think about forces.

The shaping of representations by processes acting on individual exemplars can

be abstracted, to be considered the action of forces on acoustic distributions. That

is, each process in production or perception may be considered to exert a force on the

acoustic distributions that constitute representations. Formally, such a force can be

understood as the expected effect of applying the process to an exemplar sampled at

random from the distribution. For every state of the system, there will exist forces

on every representation. The net force on each representation, formed by composing

all of the independent forces, indicates the way in which it is expected to change,

averaged over many different runs of the model. The representations will continue to

change until they reach a combined state in which all forces are balanced – a valley

in the adaptive landscape. In this way, forces on distributions ultimately produce the

adaptive landscape, and can also be used to describe paths taken around it.

There are many possible forces on acoustic distributions, because every process in

production or perception may give rise to one. However, these forces fall into just a

few basic kinds, based on how they affect the distribution. Figure 2.3 illustrates the
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Figure 2.3: Forces on acoustic distributions. Left: a single phoneme representation undergoing
phonetic drift is subject to a pushing force (A), a spreading force (B), and a squeezing force (C).
Right: two phoneme representations in a push chain are also subject to a repulsive force (D).

forces that apply in the model presented in this chapter, in situations with one or two

interacting phoneme representations.13 A single, isolated phoneme representation

undergoing phonetic drift is subject to: a pushing force, which pushes it along in

a particular direction; a spreading force, which spreads it outward from its center;

and a squeezing force, which squeezes it inward toward its center. For two phoneme

representations interacting in a push chain, only one is subject to the pushing force,

but both are subject to the spreading and squeezing forces, and also to an additional

repulsive force, which repels each phoneme away from the other.

2.3 Model description

Following Exemplar-Theoretic principles, the model constructed in this chapter forms

a production-perception loop (Pierrehumbert, 2001) and consists of a cycle of pro-

cesses applying to exemplars (one per iteration). It is a listener-based model because

the processes in production are minimal and do not correspond to active strategizing

by the speaker in any way,14 while the processes in perception make room for passive

13Since articulatory boundaries give rise to dispersion, they also generate forces that are not
pictured in Figure 2.3, which push inward from the boundaries of the acoustic space. I have not
included these forces in the present model because they do not bear directly on the kinds of change
I model, where movement of phonemes is not directed toward or away from articulatory boundaries.

14Of course, speakers can and do strategize in production, at least some of the time, and the
model can be extended to incorporate such speaker-based production biases. I have not made such
an extension at present in order to make clear the potential of listener-based perceptual biases for
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and powerful biases that are known to affect listeners in the short-term and that

shape the behavior of the model in the long-term.

In this section, I describe and formalize the representations in the model, the pro-

cesses constituting production and perception, and the way in which these processes

yield the forces that drive the evolution of the system. Throughout, I compare the

low-level details of the model with those of previous models, and I conclude by high-

lighting the major high-level areas in which the model makes important contributions

through new decisions.

2.3.1 Representations in the model

The model describes how the realization of a phoneme occurring within words changes

over time as those words are used in successful communication. For concrete illustra-

tion, it can be assumed that the phoneme in question is a vowel, and the words in

question are monosyllabic.

The model contains three levels of representation in memory. At the lowest level

are exemplars, arranged within a perceptual-acoustic exemplar space. Exemplars

are collected into the intermediate-level representation of types, which correspond to

words. The frequency of a type is represented by the number of exemplars it contains.

The highest-level representations are categories, which correspond to phonemes. I

include a glossary of representation terms in Table 2.1, along with measures of the

representations in simulations, for ease of reference.

the following chapters. However, the incorporation of speaker-based biases alongside listener-based
biases constitutes a valuable avenue for future research, as it enables a comparison between the two
kinds of biases in terms of their capacity to account for established patterns of language change.
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Table 2.1: Glossary of representation terms

Term Meaning Example Simulations

Exemplar A memory trace of an experienced in-
stance of a particular type, i.e. a spo-
ken word.

“map” 492/category

Exemplar space The distribution of exemplars across
a granularized perceptual-acoustic
dimension (e.g. vowel F1). Assumed
to be shared across perception and
production.

Grain: 0.1

Type An abstract template for a word
containing a particular phoneme,
collecting together experienced in-
stances of that word in mem-
ory. Contains information about the
frame (e.g. onset and coda conso-
nants of a monosyllabic word) and
the category (e.g. nucleus vowel).

map 92/category

Type frequency The number of exemplars of a given
type. Based on word log-frequency
in a large corpus (see Appendix A).

Range: 1-12

Category A generalization over experienced in-
stances of a phoneme (e.g. a vowel),
stored in memory.

/æ/ 1–2 categories
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2.3.1.1 Exemplars

As in all exemplar-based models (Section 2.2), the building blocks of the present model

are exemplars, which are detailed memory traces of linguistic events. For present

purposes, exemplars in the model can be understood as capturing the experienced

perceptual-acoustic value of the nucleus vowel in a word. For example, exemplars

of the word map are remembered instances of spoken “map”, each one containing a

slightly different realization of the vowel /æ/.

Exemplars are distributed in a perceptual-acoustic exemplar space. Following

Kruschke (1992), the exemplar space is granularized, such that acoustic values that are

different but nevertheless perceived identically are all represented by a single, shared

value (see also Pierrehumbert, 2001). For this early work, I make the simplifying

assumption that the exemplar space is one-dimensional, e.g. corresponding to F1 at

the vowel midpoint.

The model contains a single exemplar space, shared across production and percep-

tion. This can be interpreted as a single agent talking to themself, or as an aggregate

over a homogeneous community talking amongst itself. The modeling of multiple

agents with distinct spaces is left for future work.

2.3.1.2 Types

Exemplars are labeled as instances of words, which in the model are represented by

types. A type has a dual nature: it is both a static entity with abstract properties,

defining a template for relating to exemplars, and a dynamic entity with acoustic

properties, constructed by exemplars. Types mediate the processing of exemplars in

production and perception.

Construed as a static entity, a type is a template with two abstract properties

of current relevance: the phonological frame, which specifies the parts of the word
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that are not at issue, and the category to which the type belongs, which specifies

the phoneme that is at issue (see next section). For example, the type corresponding

to the word map has the phonological frame /m p/ and belongs to the category

/æ/. For simplicity, I assume that there are no minimal pairs, so that the category

membership of a given type may be uniquely determined from its phonological frame.

Such an assumption is warranted by the fact that only a minority of words in real

lexicons are part of a minimal pair, and it is unlikely that a minority of words can

drive change across an entire phoneme representation; see Appendix C for further

discussion and supporting simulations.

Construed as a dynamic entity, a type is a collection of exemplars that fit its

abstract template (i.e. that all correspond to the same word). Consequently, it can

be understood as a distribution in the perceptual-acoustic exemplar space, formed by

collecting the acoustic values of these exemplars.

Different types have different numbers of exemplars. I follow the multiple-trace

hypothesis (Hintzman & Block, 1971) in assuming that the number of exemplars for

a given type represents that type’s frequency. For the simulations presented here,

I model type frequencies on word log-frequencies in a large corpus. Consequently,

types in the model have between 1 and 12 exemplars (see Appendix A for details).

Type frequency can be understood as an individual’s subjective frequency of a

word, as compared with the objective frequency of that word in actual experience.

The decision to represent subjective frequencies by the log-transformation of objective

frequencies reflects the fact that participants underestimate the frequency of common

words (Begg, 1974). It is also consistent with the “negatively accelerated, increasing

relation between represented and actual frequency” observed by Nosofsky (1991, p.

15). Such log-transformation is widely used in processing models and empirical stud-

ies assessing a relationship between word frequency and behavior (in terms of both

behavioral response properties – e.g. reaction time and categorization probability –
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and word realization properties – e.g. duration and acoustic quality), both for words

in isolation (e.g. Murray & Forster, 2004, and studies cited therein) and for words in

context (e.g. Smith & Levy, 2013, and studies cited therein).

The model uses the same (subjective) type frequencies for production and per-

ception. The use of subjective rather than objective frequencies in production might

seem inappropriate; after all, in the real world, words are produced according to their

frequency rather than their log-frequency. However, it is not, because the model

is fundamentally concerned only with productions that are assessed for storage in

memory, which need not include all words in a stream of speech (see also Landauer,

1986, for a model of memory in which not every input is stored). Similarly to re-

cent subsampling approaches in Natural Language Processing (Mikolov et al., 2013),

I assume that listeners may filter out (or otherwise downweight) some instances of

high-frequency words due to their high predictability. I take the liberty not to model

such filtered instances for the sake of computational efficiency.

2.3.1.3 Categories

Each type in the model belongs to a particular category, which corresponds to a

phoneme and represents an abstract generalization over experienced instances of

words containing that phoneme. For example, the category representation of the

phoneme /æ/ is a generalization over experiences with words like map, lab, cat, etc.,

which picks up on the qualities of the common nucleus vowel.

A category can be construed as the set of exemplars of all types that it contains.

In the same way as for the constituent types, collecting the acoustic values of these

exemplars yields a representation of the category as a distribution in the perceptual-

acoustic exemplar space.

In the present model, I include 92 types per category, for a total of 492 exemplars

per category. The initial distribution of exemplars for each category is constructed in



CHAPTER 2. A LISTENER-BASED MODEL 34

such a way as to avoid asymmetries across categories, across classes of type frequency,

or across exemplars within a frequency class. See Appendix A for further details.

For modeling phonetic drift, I include a single category. For modeling push chains,

I include two categories: a Pusher category that receives an external bias, and a

Pushee category that does not. The initial width of the categories, σ, and the initial

distance between them, µ, are parameters of the model.

2.3.2 Processes in the model

Each iteration of the model begins with the production of a token – an instance

of a type with a particular target acoustic value – based on the existing exemplar

space. The produced token is then transmitted to the listener, as the acoustic value

of an unknown phoneme residing in a known phonological frame.15 In perception, the

listener uses the value and frame to recover the type (and thus the category) intended

by the speaker, and then decides whether the token should be stored as an exemplar

of that type and thus update the corresponding category distribution.

Together, production and perception form a closed loop, gradually updating the

distribution of exemplars in the space through the generation and storage of tokens.

This loop is composed of multiple processes, both on the production side and the

perception side, as illustrated in Figure 2.4. It is these processes that yield the

category-level forces illustrated previously in Figure 2.3.

15For simplicity, I assume that both the acoustic value and the phonological frame of the token
are perceived exactly as produced.
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Figure 2.4: Schematic illustration of processes in the model. Outline colors represent phoneme
category membership (e.g. /æ/), shapes represent phonological frame (e.g. /m p/), and fill colors
and horizontal positions represent perceptual-acoustic value (e.g. vowel F1). Dark green components
with Greek letters indicate parameters of the model. (A) Two partially-overlapping categories exist
in an exemplar space. (B) The speaker randomly selects a type for production, according to its
frequency. (C) An exemplar of that type is randomly selected to provide an acoustic target for
the production. (D) For the Pusher, the target is shifted by a constant bias toward the Pushee.
(E) The actual realization of the target is imprecise, causing it to shift by a random amount in
either direction. (F) The realized token is transmitted to the listener, with its acoustic value and
phonological frame but without its category membership. (G) The listener locates the token in
their exemplar space, activating surrounding exemplars of both categories within a fixed activation
window. (H) The candidate type of the token is identified based on context (represented here
by phonological frame), yielding identification of the intended category. (I) The activation of the
intended category (red) is compared to the activation of the other category (blue); if the ratio of
activations is below a fixed discriminability threshold, the token is unlikely to be stored. (J) The
activation of the intended category is compared to a typicality threshold; if the activation is below
the threshold, the token is unlikely to be stored. (K) If the token is sufficiently discriminable and
typical, it is stored in the listener’s exemplar space, replacing a random exemplar of the same type.
Storage updates the exemplar space for future production and perception.
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2.3.2.1 Type selection

Production begins with a speaker selecting a type to produce, Tk. The selection of

a type is random and conducted across types from all categories, weighted by type

frequency16 (fk), as shown in Equation (2.1). Consequently, production of a type is

akin to drawing from a unigram ‘bag-of-types’ language model. On each iteration,

this draw is independent; production is not influenced by history or context.

P (Tk) =
fk∑
j fj

(2.1)

The weighting of type selection by frequency yields production rates that are

anchored in the lexicon, external to the exemplar system (Wedel & Fatkullin, 2017).

This fact allows the model to avoid the problem of categories leeching each other to

extinction, as seen in other models where production rates are anchored entirely in

system-internal exemplar priming (e.g. Pierrehumbert, 2001).

2.3.2.2 Target selection

Having decided what to say, a speaker then decides how to say it. For this, the

speaker begins by selecting an initial acoustic target of production. Target selection

is a random (uniform) draw from the set of exemplars of the to-be-produced type.

The probability of choosing exemplar j of type Tk, with acoustic value xj,k, is given

by Equation (2.2).

P (v = xj,k|Tk) =
1

fk
(2.2)

Unlike in other models (Ettlinger, 2007; Pierrehumbert, 2001; Sóskuthy, 2013;

Tupper, 2015; Wedel, 2006, 2012; Wedel & Fatkullin, 2017), target selection is not

influenced by exemplar age. It is also not influenced by properties of the type, such

16The type frequencies underlying production are the same as those underlying perception, and
thus reflect real-world log-frequency. See Section 2.3.1.2 for discussion.
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as frequency, or of the occasion, such as social situation. Consequently, type and

target selection together form a random (uniform) draw from the set of all exemplars,

meaning that they do not reflect any active strategizing on the part of the speaker.

Having chosen an initial production target, the speaker does not just produce it

outright. Prior to realization, the target value is adjusted under two influences, bias

and imprecision.

2.3.2.3 Bias

The first adjustment of the target value is due to bias, which shifts the target by a

small and consistent amount. Bias represents external influences such as reduction

of articulatory effort. At the level of the category distribution, it yields the intrusive

force (henceforth, the bias force). The degree of bias, β, is a parameter of the model;

as β grows, so does the bias force.

In the simulations presented here, I apply bias to all productions in the single-

category case, and to all productions of the Pusher category in the two-category case.

Bias consists of the addition of β to the target v, yielding a new target v′. The bias

process is illustrated for the two-category case in Equation (2.3).

v′ =

v + β if target is Pusher

v if target is Pushee

(2.3)

The function of bias is to enforce sustained category interaction and promote

long-term movement in one direction. Thus, bias itself does not cause categories to

interact, but rather gives categories sustained opportunities to interact. Simulations

of two categories without bias exhibit decreasing category interaction over time (see

Section 3.5.2 of Chapter 3).

The treatment of bias as systematic, i.e. applied to all tokens (of the Pusher)



CHAPTER 2. A LISTENER-BASED MODEL 38

equally, follows that presented by Pierrehumbert (2001). The major downside to this

treatment is that the bias is unconstrained and continues acting in the same way

throughout the simulation, generating perpetual category movement. Other authors

(Sóskuthy, 2013; Tupper, 2015; Wedel, 2006; Wedel & Fatkullin, 2017) use instead a

bias that applies to tokens differentially, based on their distance from some fixed at-

tractor point. This alternative treatment places constraints on the movement induced

by the bias, causing movement to cease when the Pusher reaches the attractor. While

it is easy to understand how such an attractor may arise in the case of leniting biases

(i.e. through the minimization of articulatory effort), it is harder to understand how

an attractor may arise in sound change more generally, assuming that it is not some-

thing the speaker can agentively establish. Instead, the illusion of an attractor may

result from the interaction of counteracting forces (Sóskuthy, 2013). Consequently,

the generation of perpetual movement under the present treatment is a reflex of the

simplicity of the modeling environment: with the inclusion of additional repellers

in the system (provided by other categories and/or articulatory limits), movement

would no longer be unconstrained.

2.3.2.4 Imprecision

The second adjustment of the target value is due to imprecision, which shifts the

target by a small (random) amount in either direction. Imprecision represents natural

variability in the application of motor routines in realization.17 At the level of the

category distribution, it yields the spreading force (henceforth, the imprecision force).

The degree of imprecision, ι, is a parameter of the model; as ι grows, so does the

imprecision force.

17In principle, imprecision may be experienced by the speaker or by the listener. The number of
imprecision processes does not affect the high-level model behavior, so I choose a single process for
simplicity. I choose to locate this process in the speaker, to make it clear that the core claim of the
listener’s centrality to sound change is based on processes that have strong justification for being
listener-based.
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I implement imprecision through the addition of random noise n to the target v′,

for all productions. This process yields a final target v′′ for the transmitted token,

as shown in Equation (2.4). n is a single sample from a normal distribution with

standard deviation ι; the larger ι, the more the target may deviate. In keeping with

the granularization of the exemplar space (Section 2.3.1.1), the final target v′′ is

rounded to the nearest 0.1 before the token is transmitted.

v′′ = v′ + n n ∼ N (0, ι2) (2.4)

The function of imprecision is to allow a discrete set of exemplars to generate a

continuous distribution over the acoustic space, from which targets can be sampled

in production. In this way, imprecision allows for novelty in production targets.

The use of token-wise imprecision generates a non-parametric sampling distribu-

tion. This approach is standard in exemplar-based models, but other approaches are

also possible. For example, Harrington et al. (2018) generate a parametric sampling

distribution by inferring a Gaussian distribution over all exemplars of a category. A

parametric approach forces all exemplar distributions to have a common shape, with

fixed kurtosis and zero skewness. While this enforcement makes the maintenance of

category shape almost trivial, it doesn’t allow for the modeling of distributions that

differ substantially from the parametric (Gaussian) shape.

2.3.2.5 Activation

For the listener, the incoming token activates exemplars of both categories within a

window around the target. These activations are aggregated within each category to

yield overall category activation, which underlies key processes in perception. The

size of the activation window, α, is a parameter of the model, and modulates the size

of perceptual forces.
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The activation Ai of category Ci is given by the sum of the activations of all

exemplars belonging to that category, as shown in Equation (2.5). The activation of

each exemplar x is determined by its distance from the token v′′, through the use of a

Gaussian activation window wa with width α, as shown in Equation (2.6). Exemplars

that are very near the token are given activations close to 1, while exemplars that are

very far away are given activations close to 0. Increasing α causes exemplars within

a wider radius to be given non-negligible activations.

Ai =
∑
x∈Ci

wa(v
′′ − x) (2.5)

wa(d) = exp

(
−d2

2α2

)
(2.6)

By mapping the category activation that would arise from tokens at all points in

the exemplar space, we obtain the activation field of the category. The activation field

measures how the strength of the category changes across the space, and is of greater

representational utility than the raw exemplar distribution. Accordingly, the plots of

exemplar systems that I will display later all show activation fields, not raw exemplar

distributions. Mathematically, mapping the activation field is akin to kernel density

estimation, a statistical technique for estimating a continuous probability distribution

from a discrete set of measurements (Ashby & Alfonso-Reese, 1995).

Most previous exemplar-based models of regular sound change have used a rectan-

gular (Ettlinger, 2007; Pierrehumbert, 2001, 2002) or exponential (Wedel, 2006, 2012;

Wedel & Fatkullin, 2017) activation window. The use of a Gaussian window here is

motivated by discussion in the psychological literature of an equivalent parameter (p)

in exemplar-based models of categorization using Multi-Dimensional Scaling. For ex-

ample, Nosofsky (1985) found that asymptotic human categorization data (i.e. highly

successful categorization which accesses pre-learnt structures) is better modeled with
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a Gaussian activation window than an exponential one. Similarly, Shepard (1958)

developed an underlying process model predicting that a Gaussian activation window

should arise under cases of infrequent feedback of categorization correctness, while

an exponential window should arise under continuous feedback (which arguably does

not occur in language, at least directly). The Gaussian window also has the practical

advantage that it is smooth, whereas the rectangular and exponential windows are

not (they contain jumps and a sharp peak, respectively); this ensures that the acti-

vation fields obtained in the modeling process are also smooth, even when exemplar

distributions are sparse.

2.3.2.6 Identification

Based on the phonological frame, the listener identifies the type – and thus the

category – corresponding to the token. Since we assume no minimal pairs and perfect

transmission of the phonological frame, the type intended by the speaker is the only

candidate for identification of the token. In principle, however, a set of types may be

plausible candidates, and each may be assessed for the extent to which it is compatible

with the transmitted token (Norris & McQueen, 2008). I discuss the introduction of

architecture to handle multiple candidate types in Appendix C.

Not every identified token is stored as an exemplar, updating the category repre-

sentation. The token will only be stored if it is assessed to be ‘good’ enough, meaning

that it must not strongly resemble a competing category, and must strongly resem-

ble the intended category. These assessments are performed by two probabilistic

evaluations: the discriminability evaluation and the typicality evaluation.

2.3.2.7 Discriminability evaluation

The first evaluation, the discriminability evaluation, poses the question: how likely

is the token to be a realization of its identified category, as opposed to any other
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relevant category, based on its acoustic value? It follows results in speech perception

that tokens that are acoustically ambiguous between categories incur processing costs,

causing errors and delays in recognition (e.g. Connine, Blasko, & Hall, 1991). Tokens

that do not pass the evaluation are not stored, and hence do not update the category

distribution. In the case of phonetic drift, the discriminability evaluation cannot be

failed, since there is no relevant ‘other’ category. Thus, the following description is

based on the case of push chains, where the identified category competes with one

other category.

The discriminability evaluation is probabilistic, based on the ratio of category

activations (identified category activation, Ai, divided by other category activation,

Ao). Hence, tokens outside of the region of category overlap (where the ratio is large)

are more likely to pass than tokens inside it (where the ratio is small). At the level of

the category distribution, this asymmetry yields the repulsive force (henceforth, the

discriminability force).

The evaluation proceeds by comparing the category activation ratio to a discrim-

inability threshold, δ, as shown in Equation (2.7). δ is a parameter whose size deter-

mines the size of the discriminability force: as δ grows higher, passing the evaluation

becomes harder, and the force grows stronger.

P (pass discriminability evaluation|Ai, Ao) =

Ai
Ao

Ai
Ao

+ δ
(2.7)

The formulation of the discriminability evaluation in Equation (2.7) is equivalent

to an application of the Generalized Context Model (Nosofsky, 1986), which extends

the application of Luce’s Choice Rule (Luce, 1959) over category activations in the

Context Model (Medin & Schaffer, 1978) by incorporating category response biases.

Here, the bias towards the identified category Ci is 1/δ and the bias towards the other
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category Co is 1, as shown by Equation (2.8).

P (pass discriminability evaluation|Ai, Ao) =
1
δ
· Ai

1
δ
· Ai + 1 · Ao

(2.8)

This equivalence allows for an alternative interpretation of discriminability evalua-

tion, as the act of categorizing the input. In particular, a probabilistic discriminability

evaluation translates to a probabilistic model of categorization, in which the boundary

between categories is permeable (cf. Wedel & Fatkullin, 2017). Similarly, not storing

tokens that fail the discriminability evaluation translates to not storing tokens that

are miscategorized, which is a source of contrast maintenance in many exemplar-

based models (Harrington et al., 2018; Sóskuthy, 2013; Tupper, 2015; Wedel, 2006,

2012). Consequently, the discriminability evaluation is expected to play a major role

in meeting the model desiderata of maintaining category overlap while generating

interlinked movement.

Following the correspondence of 1/δ to categorization bias, I assume δ ≤ 1, to

obtain a positive bias toward the identified category. Given the lack of minimal pairs

in the model, this assumption means that an acoustically ambiguous signal is likely

to be recognized as a real word rather than a nonword, consistent with experimental

results (e.g. Ganong, 1980). It also means that the discriminability force grows with

the size of the activation window, α, in most cases.18 A wider activation window

encapsulates more exemplars, yielding a category activation ratio closer to 1, and

hence to δ ≤ 1.

18Increasing α does not increase the discriminability force for the few tokens produced on the
‘wrong’ side of the category boundary, for which the category activation ratio is less than 1. In this
case, taking the ratio closer to 1 actually takes it further from δ ≤ 1.
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2.3.2.8 Typicality evaluation

If the token passes the discriminability evaluation, then it has been confidently as-

sessed as a better fit for the identified category than for any other category. However,

this assessment does not necessarily mean that the token is a good fit for the identified

category. The question of the absolute value of token’s fit for the identified category

is addressed by the second evaluation, the typicality evaluation.

The typicality evaluation poses the question: how good is the token as a realization

of its identified category, in absolute terms? It follows results in speech perception

that tokens that are ‘good’ instances of their category – i.e. that are similar to many

other instances of the category – are encoded strongly in memory (e.g. Clopper,

Tamati, & Pierrehumbert, 2016), giving them advantages in immediate processing

(e.g. Johnson, 2006) and long-term recall (e.g. Sumner et al., 2014). Tokens that are

poor instances of their category, i.e. that do not pass the evaluation, are not stored.

The typicality evaluation is probabilistic, based on the activation of the identified

category. Hence, tokens that are near the mode of the category (where activation

is high) are more likely to pass than tokens that are far from it (where activation is

low). At the level of the category distribution, this asymmetry yields the squeezing

force (henceforth, the typicality force).

The evaluation proceeds by comparing the activation of the identified category,

Ai (normalized for the number of exemplars of the category, Ni), to a typicality

threshold, τ , as shown in Equation (2.9). τ is a parameter whose size determines

the size of the typicality force: as τ grows higher, passing the evaluation becomes

harder, and the force grows stronger. The typicality force also grows as the size of

the activation window, α, shrinks. A narrower window encapsulates fewer exemplars
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and yields lower category activation.

P (pass typicality evaluation|Ai) = 1− exp

(
− ln 2 · Ai

Niτ

)
(2.9)

The formulation of typicality evaluation in Equation (2.9) is inspired by the Com-

plete Set Model of Busemeyer, Dewey, and Medin (1984). In this model, a “junk”

category competes with established categories in the classification of a token; when the

token does not yield sufficient activation, it is discarded as junk. The junk category

has no exemplar basis of representation and thus is not included in the application

of Luce’s Choice Rule (i.e. in the equivalent of Equation (2.8)); instead, it discounts

the probability mass of each category (as derived from Luce’s Choice Rule) by a scale

factor. As shown in Equation (2.10), this is equivalent to a two-stage process where

the scale factor represents the probability associated with a junking decision that is

contingent on categorization.

P (member of Ci and not junk) = P (member of Ci) · P (not junk|member of Ci)

(2.10)

I equate this post-categorization junking decision with typicality evaluation. Buse-

meyer et al. (1984) assume that junking is independent of (and thus potentially pre-

cedes) categorization, with the probability of junking decreasing exponentially with

total activation across all categories. I keep the same form for the present treatment

of typicality evaluation (Equation (2.9)), but assume that only the activation of the

identified category contributes. This assumption follows from the treatment of typi-

cality evaluation as occurring after identification and discriminability evaluation, and

hence as assessing the extent to which the token is typical for the category to which

it has been confidently assigned.

Typicality is a novel process for an exemplar-based model. In previous models, the
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squeezing force that is generated here by typicality is instead generated by a different

process. Following Pierrehumbert (2001), previous models generate the squeezing

force by entrenchment, a process of averaging targets in production (but see also

Hintzman, 1986, and Goldinger, 1998, for a proposal of entrenchment in perception,

through echoes). Though typicality and entrenchment both generate squeezing forces,

they generate different kinds of squeezing forces, and the kind offered by typicality is

superior for the model desiderata of maintaining category overlap without sacrificing

category shape. For further discussion, see Section 2.3.3.

2.3.2.9 Storage

If the token passes both the discriminability and typicality evaluations, then it is

stored as an exemplar of the identified category, updating the category representa-

tion. The conditioning of storage by the two evaluations implies that perceptually

‘poor’ (indiscriminable and/or atypical) productions are much less likely to influence

representations – and thus are much less likely to be repeated – than perceptually

‘good’ productions.

When a token is stored, it overwrites a random exemplar of the same type (see e.g.

Landauer, 1986, for discussion of overwriting as a principle of memory). All exemplars

are stored with the same strength, which does not decay over time. This approach is

nonstandard; following Pierrehumbert (2001), most exemplar-based models assume

that exemplars decay over time and are never overwritten (Ettlinger, 2007; Sóskuthy,

2013; Tupper, 2015; Wedel, 2006, 2012; Wedel & Fatkullin, 2017). However, it is

not without precedent: a similar approach is taken in the models presented by Wedel

(2004) and Harrington et al. (2018). Moreover, it has no negative impact on the high-

level model results, apart from preventing the problematic extinction of categories

through leeching (cf. Wedel & Fatkullin, 2017). In fact, averaged over many runs, the

expected behavior of a model with random overwriting of exemplars is equivalent to



CHAPTER 2. A LISTENER-BASED MODEL 47

a special case of a model with decaying exemplars; see Appendix D for mathematical

discussion.

Because tokens that fail a perceptual evaluation are not stored, they have no in-

fluence on category representations. However, since perceptual evaluations are prob-

abilistic, tokens that fail an evaluation on one run of the model may pass it on

another. Consequently, averaged over many different runs, the impact of perceptual

evaluations is not to prevent perceptually ‘poor’ tokens from influencing category

representations, but rather to decrease their influence on category representations

(relative to perceptually ‘good’ tokens). In this way, the approach taken to storage

here is equivalent to one in which all exemplars are stored, with a strength determined

by the discriminability and typicality evaluations.

2.3.3 Comparison to existing models

At a high level, most of the representations and processes in the present model are

common to previously-proposed exemplar-based models (Ettlinger, 2007; Pierrehum-

bert, 2001; Sóskuthy, 2013; Tupper, 2015; Wedel, 2004, 2006, 2012; Wedel & Fatkullin,

2017), though some low-level details of implementation differ. There are two compo-

nents of the model that stand out from this commonality.

Firstly, the model detailed here includes both category- and type-level represen-

tations, and includes many types per category, of many different frequencies. Most

previous exemplar-based models (Ettlinger, 2007; Pierrehumbert, 2001; Sóskuthy,

2013; Tupper, 2015; Wedel & Fatkullin, 2017) include just one of these two levels of

representation, and those that include both (Wedel, 2004, 2006, 2012) include just a

few types, all of the same frequency. Using a prototype-based model (which is closely

related to exemplar-based models), Sóskuthy (2014) shows that the inclusion of many

types per category, of many different frequencies, has implications both for changes

in category shape and for frequency effects on rates of change. Given the focus on
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maintaining category shape here, and on frequency effects in Chapter 3, the novel

treatment of type representations in the present model ensures that the results are

applicable to real-world sound change, which of course includes many different words

of many different frequencies.

Secondly, as described in Section 2.3.2.8, the model detailed here generates a

squeezing force with the novel process of typicality evaluation in perception, rather

than the usual process of entrenchment in production (cf. Pierrehumbert, 2001; Tup-

per, 2015; Wedel, 2006, 2012; Wedel & Fatkullin, 2017). This difference is not merely

cosmetic, in shifting the origin of the squeezing force to perception from production;

rather, it results in an important difference in the nature of the force. The force

generated by typicality evaluation squeezes a category toward its mode, while the

force generated by entrenchment squeezes it toward its mean. Squeezing toward the

mode is superior to squeezing toward the mean for the present model desiderata, as

it better maintains category overlap while better resisting changes in category shape.

To see how the differences between squeezing toward the mode and mean work out,

consider the case of partially overlapping categories with short tails in the overlapping

region (as created by the discriminability force, if left unchecked). Since the mode

of each category is located closer to the overlapping region than the mean, squeezing

toward the mode will push categories away from each other less than squeezing toward

the mean. With less compounding of category repulsion, squeezing toward the mode

will maintain overlap better than squeezing toward the mean. Furthermore, if the

squeezing force grows superlinearly with the distance from the center (mode or mean),

then squeezing toward the mode will shorten the short tail less than squeezing toward

the mean, since the short tail is closer to the mode than it is to the mean (and vice-

versa for the long tail). With less shortening of the short tail and more shortening

of the long tail, squeezing toward the mode will resist increases in category skewness

better than squeezing toward the mean.
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Bias (A)

Imprecision (B)

Discriminability (C)

Typicality (D)

↑β

↑ι

↑δ ↑α

↑τ ↓α

Figure 2.5: Forces from processes in the model. Iterated over time, processes in the model exert
forces on the distributions of exemplars within each category. (A) Bias pushes one category along,
toward the other. This force increases with β. (B) Imprecision spreads each category outward. This
force increases with ι. (C) Discriminability pushes exemplars out of the region of overlap between
categories, repelling categories away from one another. This force increases with δ and α. (D)
Typicality lightens the tails of distributions, squeezing each category inward toward its mode and
countering skewness. This force increases with τ and decreases with α.

2.4 Modeling regular sound change

The processes described in Section 2.3.2 work together to model regular sound change

by generating different (complementary and counteracting) forces on category distri-

butions, as illustrated in Figure 2.5. The size of each force is determined by parame-

ters of the relevant processes. Since the forces act to construct the adaptive landscape,

which shapes the long-term behavior of the model, the output of the model changes as

the parameters change. For each choice of parameters, the model generates behavior

that may or may not be appropriate for regular sound change.

How can it be determined which choices of parameters are appropriate for mod-

eling regular sound change? Recall from Section 2.1.3 the high-level desiderata for a

model of regular sound change: for both phonetic drift and push chains, it should (i)

generate movement of each category; (ii) maintain the shape (width and skewness)

of each category; and, for push chains, it should further maintain the (iii) distance

between and (iv) overlap of the categories. The task for appropriate modeling of

regular sound change is to identify parameter values that allow the model to meet

these desiderata.
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2.4.1 Meeting desiderata

As the model is run, the system of categories will move about the adaptive landscape

defined by the category-level forces. The system will stop changing when it reaches a

valley in the adaptive landscape, where the forces are balanced.19 To meet the model

desiderata, parameter values have to be chosen in such a way that the forces are close

to balanced right from the beginning. Then, the structural properties with which the

categories are initialized will be maintained perpetually.

For phonetic drift, three forces are active: bias, imprecision, and typicality. From

the theoretical perspective of forces, the model desideratum of movement should be

guaranteed by the bias force, for any nonzero value of β. However, since the category

updates one exemplar at a time rather than all at once, the bias force will cease to

act on occasions where it creates atypical tokens, and it may introduce ‘motion blur’

that increases category skewness (see also Pierrehumbert, 2001). For this reason, in

practice, large values of β will be ineffective or counterproductive for meeting the

model desiderata. The other forces in phonetic drift are more straightforward. To

meet the model desideratum of maintaining category width, values of ι, τ , and α must

be chosen that balance the imprecision force against the typicality force. A larger

value of ι will cause a larger imprecision force that tends to widen the category, and

must be countered by a larger value of τ or smaller value of α, which will cause a

larger typicality force that tends to narrow the category.

For push chains, all four forces are active in the Pusher, and the three forces

except bias are active in the Pushee. Movement of the Pusher is created by the bias

force, but is countered by the discriminability force, and movement of the Pushee

19Since the present model has an unbounded exemplar space and no external categories, movement
due to the bias force will persist perpetually. This means that the bias force need not be balanced
out, but rather used to ensure that the net force in one direction is the same for both categories.
In terms of the adaptive landscape, perpetual movement under the bias force corresponds to a long
valley that has a constant downward slope, forever.
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is created by the discriminability force. To meet the desideratum of maintaining

category distance, both categories must move at the same rate. Movement of both

categories at the same rate can be obtained only if the difference between the bias

and discriminability forces in the Pusher is equal to the discriminability force in the

Pushee. Thus, given a set of parameters that balance forces in phonetic drift, a

starting point for push chains requires an appropriate choice of δ. This is only a

starting point because the discriminability force is asymmetric, acting only on the

side of each category that overlaps with the other category. Consequently, any choice

of δ > 0 will introduce an additional tendency for categories to narrow. To meet the

model desideratum of maintaining category shape, this tendency must be countered

by increasing ι relative to τ , thus increasing the imprecision force relative to the

typicality force. The fact that the typicality force squeezes toward the mode rather

than the mean will help to prevent increases of category skewness, in service of the

desideratum of maintaining category shape (see Section 2.3.3).

2.4.2 Model tuning

As suggested by the descriptions in Section 2.4.1, the choices of parameter values

that allow the model to meet the desiderata are highly interdependent and sensitive.

Making effective choices therefore requires a systematic approach that explores the

interactions between different parameters in a thorough manner, tuning the model to

the desiderata. For both phonetic drift and push chains, I used a stepwise approach,

tuning sets of parameters in order to meet different desiderata in turn. In this section,

I describe the tuning processes at a high level; for the details of parameter values

explored, see Appendix B.
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Figure 2.6: Illustration of the model tuning process for phonetic drift. The initialization parameter σ
(blue box) was set to several values to define the objectives of the modeling process. The activation
window size parameter α (red box) was arbitrarily fixed to σ/2 to provide a scale (without loss
of generality). The bias size β (black boxes) was set to pre-defined (controlled) values. The other
relevant parameters, typicality threshold τ and imprecision degree ι (green boxes) were tuned in
order to meet the desiderata of maintaining category width and shape.

2.4.2.1 Tuning for phonetic drift

I illustrate the approach to model tuning for phonetic drift in Figure 2.6. The general

strategy was to pre-determine values for the initial category width, σ, and then choose

values for the other parameters so as to obtain category movement with maintenance

of category shape and width.

I pre-determined three values for σ, representing narrow, medium-width, and wide

category distributions. I fixed the activation window size, α, to be half the width of

the category, σ, reflecting the observation that perception should draw on neither too

many nor too few exemplars within a category. Fixing α in this way is not problematic

because its role is to provide a perceptual scale, moderating the effect of the typicality

threshold, τ , on the typicality force.

The goal of parameter tuning is to balance three forces: bias, imprecision, and

typicality. This can be accomplished by adjusting two forces while keeping the other
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one fixed (providing the scale), because what matters for the qualitative dynamics of

the system is the size of each force relative to the others. I therefore pre-determined

three values for the bias, β, yielding weak, medium-strength, and strong bias forces.

These decisions gave me 9 systems (one for each pair of σ and β), each with two

parameters to tune: τ , which determines the strength of the typicality force; and ι,

which determines the strength of the imprecision force. I tuned these parameters by

varying them independently among 10 values each. For each of the 9 systems and

each of the 100 pairs of values of τ and ι, I ran the model 100 times for 5000 iterations

(enough to indicate the stable state). For each system, I chose the value of τ that best

maintained category kurtosis (tail length), and the value of ι that best maintained

category width and skewness.

2.4.2.2 Tuning for push chains

The approach to model tuning for push chains strongly resembled the approach for

phonetic drift. The general strategy was to pre-determine values for the initial cate-

gory width, σ, and initial category distance, µ, and then choose values for the other

parameters so as to maintain category shape, width, distance, and overlap, building

on the existing results for phonetic drift. I illustrate the approach in Figure 2.7.

I used the same three pre-determined values of σ as for phonetic drift, and also

fixed α in the same way. I pre-determined two values for µ for each value of σ,

representing two different category distances and degrees of category overlap. These

initialization parameters both define the structural properties to be maintained and

contribute to the initial behavior of the model – causing, for example, greater initial

discriminability force when the overlapping region is initially dense.

The goal of parameter tuning for push chains is to balance four forces: bias,

imprecision, and typicality (as for phonetic drift), as well as discriminability. To
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Figure 2.7: Illustration of the parameter-tuning process for push chains. The initialization parame-
ters σ and µ (blue boxes) were set to several values to define the objectives of the modeling process.
The activation window size parameter α (red box) was arbitrarily fixed to σ/2 to provide a scale
(without loss of generality). The discriminability threshold δ (black boxes) was set to pre-defined
(controlled) values. The other parameters (τ , ι, β; green boxes) were tuned in order to meet the
objectives of the modeling process, in two steps. In the first step, I drew on the results of tuning
for phonetic drift to choose a value of τ yielding maintenance of category shape alongside a range
of non-decreasing category widths (for different values of ι). In the second step, I simulated push
chains with a range of values of ι and β and chose the value of ι that yielded best maintenance
of category width and distance and the value of β that additionally yielded best maintenance of
category overlap.
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balance four forces, one can be fixed while the others are adjusted. I therefore pre-

determined three values for the discriminability threshold, δ, yielding three different

(fixed) strengths of the discriminability force: weak, medium-strength, and strong.

These decisions gave me 18 systems (one for each combination of σ, µ, and δ), each

with three parameters to tune: β, which determines the strength of the bias force;

ι, which determines the strength of the imprecision force; and τ , which determines

the strength of the typicality force. I tuned these parameters in two steps. In the

first step, for each system, I drew upon the results from tuning for phonetic drift to

choose a suitable value for τ and 4 potential values for ι, which would best maintain

category shape.20 In the second step, I independently varied ι among the 4 potential

values per system and β among 25 values. For each of the 18 systems and each of the

100 pairs of values of ι and β, I ran the model 100 times for 5000 iterations. For each

system, I chose the value of ι that best maintained category width and distance, and

the value of β that best maintained category overlap.

2.4.3 Results

The tuning process successfully identified sets of parameter values that allowed the

model to meet the desiderata under a variety of circumstances, for both phonetic drift

and push chains. To my knowledge, the generation of a push chain (i.e. interlinked

category movement) with maintenance of category width, shape, distance, and overlap

is a first in the literature on exemplar-based models of regular sound change. The

results of push chain simulations for one set of parameter values are illustrated in

Figure 2.8. For details of the parameter values chosen by the tuning process, and the

structural properties they generated, see Appendix B.

20The values of ι were chosen to yield a range of increases of category width in phonetic drift.
Increases in width were deemed potentially suitable because the addition of the discriminability force
favors additional narrowing of categories, which must be countered to meet the model desiderata.
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Figure 2.8: Successful modeling of a push chain. The plot traces the evolution of exemplar dis-
tributions (rugs on horizontal axis) and corresponding activation fields for one run of the model
(parameter set (2) from Table B.2). Over time (from top panel to bottom), the two categories move
to the right, maintaining their distance from one another, their degree of overlap, and their widths
and skewnesses.
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In addition to demonstrating that the model is capable of meeting the desiderata,

the tuning process confirmed that parameter choices had the expected implications for

category properties. For example, for phonetic drift, increasing bias (β) increased cat-

egory displacement by a proportionate amount, and also increased category skewness

and kurtosis due to the introduction of ‘motion blur’. Increasing imprecision degree

(ι) increased category width, and increasing the typicality threshold (τ) decreased

category width. For push chains, higher discriminability thresholds (δ) created more

displacement of the Pushee, whilst also decreasing category width and increasing

category skewness. Thus, the parameter values affect the forces acting on category

distributions in the way outlined in Figure 2.5.

Relatedly, the tuning process also identified relationships between forces / param-

eter values that are necessary for meeting the model desiderata. For phonetic drift,

both the imprecision force (ι) and the typicality force (τ) are required to be suffi-

ciently large relative to the bias force (β) in order to prevent the category becoming

excessively skewed. When ι is small relative to β, little of the variation in production

can be attributed to imprecision, meaning that the effect of bias is very clear. When

τ is small relative to β, few extreme tokens are discarded for being atypical, meaning

that bias is permitted to continue unchecked in the creation of extreme tokens. In

addition, an increase in ι requires a concomitant increase in τ in order to maintain

category width, and vice-versa.

For push chains, ι is required to be larger than it is for phonetic drift, in order to

maintain category width in the face of the additional discriminability force. In fact, ι

is required to be very large for push chains (near σ in value, representing variation that

spans the width of the category), as it is only through imprecision that Pushee targets

can be produced outside of the existing exemplar distribution, facilitating retreat.

Additionally, greater bias force (higher values of β) is required to maintain smaller

category distances (smaller values of µ). It is bias that causes the Pusher to move
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toward the Pushee, countering the repulsion due to the discriminability force, and

nearer categories have denser overlapping regions and thus greater discriminability

force. For the same reason, a great bias force is also required to counteract a great

discriminability force, stemming from a high discriminability threshold (δ).

Finally, the tuning process highlighted the generality of the model’s ability to

meet the desiderata. The tuning process began with arbitrary decisions of values for

a number of parameters. That these decisions did not limit the ability to identify sets

of parameter values that meet the model desiderata suggests that there are many such

suitable sets of parameter values. Furthermore, the model was not highly sensitive to

the particular value of some tuned parameters. For example, slightly larger values of

τ and ι would have yielded similar category shapes and widths to the values chosen,

and thus would also have been appropriate.

2.5 Discussion

The model I have presented in this chapter makes an important contribution to the

literature on regular sound change. To my knowledge, it is the first exemplar-based

model to generate phonetic drift and push chains while maintaining key structural

properties such as category shape, distance, and overlap. In fitting with its status as

listener-based, the model owes a good deal of its success in these areas to processes

in perception.

The model’s success in meeting desiderata of structural maintenance can be at-

tributed to three aspects of the perceptual processes undertaken by the listener.

Firstly, by using a discriminability threshold δ < 1, the model induces a lexical bias

(Ganong, 1980) in cases of low discriminability, effectively shrinking the instability

that acoustic overlap between phoneme categories creates for the perception of at-

tested (real-word) types. Secondly, by not storing tokens that fail the discriminability
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evaluation (i.e. tokens that are likely to be recognized as nonwords), the model avoids

skewness-inducing overpopulation of the overlapping region between categories (see

e.g. results of “competition with discards” in Tupper, 2015). Thirdly, by including

the novel process of typicality evaluation, the model generates a squeezing force that

keeps skewness in check while facilitating overlap (see Section 2.3.3). The importance

of these perceptual processes supports the claim that the listener plays a central role

in sound change.

Further support for the centrality of the listener to the model is provided by the

fact that, without the listener, push chains would not occur at all in the current

setup: the Pusher would simply float over the Pushee, because the speaker samples

production targets without concern for potential ambiguity. The listener prevents

this behavior by providing an indirect, non-teleological influence of perceptual filter-

ing on production: whenever the speaker is ambiguous, the listener is unlikely to

store the token, and is thus unlikely to use it as a basis for future productions. The

listener thus drives category interaction in the model by creating category repulsion

via the discriminability force, with the speaker’s constant bias serving to ensure that

interaction persists in the face of this repulsion. More generally, in the current setup,

the listener drives any self-organizational response to the system as a whole, as per-

ceptual processes involve the activation of multiple exemplars (from both categories),

whereas production processes involve no more than the single initial target exemplar.

The notion that the listener could be important for sound change is not new,

but the present approach to it is. Ohala (1981) claimed that the listener could

be a source of sound change by under- or over-applying perceptual compensation for

coarticulation and thus misperceiving one sound as another. For example, the listener

could incorrectly compensate for coarticulation that wasn’t present in the realization

of /yt/ as [yt] and thus reconstruct it as /ut/. There are three main differences

between Ohala’s model and the present model.
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Firstly, Ohala’s model represents sound change as a change in the phonological

representation of words (e.g. /yt/ changing to /ut/), while the present model repre-

sents sound change as a change in the phonetic representation of a phoneme (e.g. /y/

changing its realization from [y] to [u]). Consequently, Ohala’s model is not designed

to capture the gradient changes that are observed in regular sound change, while the

present model is.

Secondly, Ohala’s model attributes the influence of the listener to misperceptions,

while the present model attributes it to memory disadvantages of acoustically ambigu-

ous tokens. While listeners certainly can misperceive one sound as another, especially

in the presence of noise (Miller & Nicely, 1955), I do not believe that misperception

is as widespread in practice (especially given context) as would be required for it

to really drive sound change (see Appendix C for related simulations showing that

misperception of minimal pairs is insufficient to generate robust push chain behavior).

Finally, in Ohala’s model, a sound change that spreads across the lexicon (outside

of the conditioning environment) must do so via analogy. Similarly, a change that

affects one phoneme category has little impact on other categories. Consequently,

the listener is a source of sound change, but does not drive sound change across the

lexicon. In the present model, the speaker is the source of sound change (via biases

in production), but the listener drives it, by forcing categories to interact (via the

discriminability evaluation).

The model presented here also makes important contributions to the listener’s role

in language change more generally. These contributions stem from its formulation as

a production-perception loop, where the representations that are drawn upon for

production are also updated through perception. Within such a loop, the diachronic

trajectory of a language is formed from the way in which the language is used at

different points in time, and thus shaped by the forces (social, cognitive, physiological,

etc.) that act during any synchronic communicative event (Beckner et al., 2009).



CHAPTER 2. A LISTENER-BASED MODEL 61

The interdependence between production and perception predicts that any sort of

synchronic asymmetry in the way language is produced or perceived has the potential

to shape patterns of diachronic change, provided it is sufficiently widespread, robust,

and persistent. Research in speech perception has revealed many powerful and passive

perceptual biases, relating to factors both internal to the language system – such as

word frequency (see Chapter 3) – and external to the language system – such as

social demographics and attitudes (see Chapter 4). Under the present model, these

perceptual biases are expected to play a large role in shaping language change.

2.6 Summary

In this chapter, I have detailed a computationally-implemented listener-based model

of regular sound change. I have illuminated how this model fits into the literature,

by comparing it to other models based in the same framework. Through such com-

parison, as well as through simulations, I have established a thorough understanding

of how the model generates sound change from interactions between the production

and perception of individual words, across numerous communicative events.

The model presented in this chapter has demonstrated the utility of a listener-

based approach to language change. Its approach to regular sound change is dis-

tinct from previous approaches and models, and it has been successful in generating

multiple instances of phonetic drift and push chains that meet empirically-grounded

desiderata. It lays important groundwork for the remaining chapters of this dis-

sertation, where I consider how biases in speech perception – which I relate to the

discriminability and typicality evaluations – can predict different words and speakers

to participate in language change at different rates.



Chapter 3

Word frequency in sound change*

In Chapter 2, I introduced a listener-based computational model of regular sound

change and demonstrated its ability to capture key properties of certain kinds of sound

change involving one or two phonemes. In this chapter, I show how the model can be

extended to capture the effects of word frequency in such changes, by incorporating

experimentally-established perceptual biases. From one perceptual bias, I generate

many different word frequency effects, for different kinds of regular sound change. I

show that these effects match all those that have been empirically established through

corpus studies of three kinds of regular sound change in the literature. Finally, I derive

general predictions for the effects of word frequency in other kinds of regular sound

change.

My primary goal in this chapter is to solve the major theoretical puzzle of explain-

ing word frequency effects in sound change, and thereby demonstrate the potential

of a listener-based approach. In doing so, I also address a secondary goal, of coun-

tering the common criticism that exemplar-based models overpredict advantages of

high-frequency words in regular sound change (Abramowicz, 2007; Bermúdez-Otero

*This chapter is based on work published as Todd et al. (2019). The analysis and discussion of
model results is primarily my own work, but it has benefited from the input of my coauthors.
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et al., 2015; Dinkin, 2008; Tamminga, 2014). In showing that the listener-based

model generates different effects of word frequency in different kinds of sound change,

I dispel the misunderstandings underlying this criticism and point out the value that

exemplar-based computational modeling can bring to the study of sound change.

This chapter is structured as follows. First, I lay out the focus on particular

kinds of word frequency effects, which I situate against the predictions of different

theories of language change (Section 3.1). Next, I describe empirically-observed word

frequency effects in diachronic sound change and synchronic speech perception (Sec-

tion 3.2), and I extend the model to connect these two effects (Section 3.3). Then,

I present simulations showing that a single perceptual bias can cause different word

frequency effects in different kinds of regular sound change (Section 3.4), together

with additional simulations showing that these effects are not driven by biases in

the speaker (Section 3.5). Finally, I discuss the implications of these results and the

predictions they make for other kinds of regular sound change (Section 3.6).

3.1 Focus

Traditionally, linguists have considered the effects of word frequency on the actuation

of sound change – i.e. whether high- or low-frequency words change first. In this

chapter, I focus instead on rates of change – i.e. whether high- or low-frequency

words change fastest. I focus on rates rather than actuation for empirical reasons:

they can be identified more easily and robustly in corpora without extensive time

depth (as a statistical interaction between word frequency and time), and they allow

for easier disentanglement of change from natural phonetic variation in a continuous

acoustic system. I focus on word frequency effects (of any sort) because different

approaches to sound change make different predictions.

According to the Neogrammarian hypothesis (see e.g. Garrett, 2014), regular



CHAPTER 3. WORD FREQUENCY IN SOUND CHANGE 64

sound change affects all eligible words in the same way – and thus at the same

rate, regardless of frequency. This lexical independence in sound change follows from

the assumption of strict modularity, where the representation of the phoneme is inde-

pendent of its instantiation in words. Under this assumption, regular sound change

involves changes to the phoneme representation rather than to words directly.

By contrast, recent usage-based approaches relax the assumption of strict modu-

larity, contending that the instantiation of the phoneme within words is central to the

way that the phoneme is represented both cognitively and theoretically (e.g. Beck-

ner et al., 2009; Blevins & Wedel, 2009; Bybee, 2002; Harrington et al., 2018; Hay

& Foulkes, 2016; Hay et al., 2015; Johnson, 1997; Pierrehumbert, 2001, 2002; Wedel,

2006, 2012). Such approaches assume that instances of the same phoneme in different

words may have different (but related) representational bases. Consequently, while

sound change is expected to affect all words containing the changing phoneme over a

certain period of time, it is not assumed to affect all words at the same rate.

In particular, the Frequency Actuation Hypothesis (henceforth, FAH; Bybee,

2002; Phillips, 1984) claims that word frequency effects21 will be different in different

kinds of sound change, depending on the motivation of the change. Phillips (1984)

presents a two-way distinction between physiologically motivated changes and non-

physiologically motivated changes. Physiologically motivated changes result from the

iteration of articulatory biases and affect the surface phonetic form of phonological

segments. An example is /t/-tapping, where a word like matter comes to sound more

like madder, reducing articulatory effort. In physiologically motivated sound changes,

high-frequency words are predicted to change faster than low-frequency words, since

21The FAH was originally posited with reference to the question of whether high- or low-frequency
words change first. For the reasons previously outlined, I reinterpret it to generate predictions about
whether high- or low-frequency words change fastest, under the assumption that change begins from
neutral initial conditions.
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they are produced and thus subjected to the articulatory bias more often. Non-

physiologically motivated changes result from lexical analogy of sound patterns to

new environments and yield new constraints on underlying phonological or phonotac-

tic structures. An example is the deletion of glides after coronal stops /t d n/, where

a word like tune comes to sound more like toon, generalizing the constraint banning

glides after other coronal consonants (Phillips, 1981). In non-physiologically moti-

vated sound changes, high-frequency words are predicted to change more slowly than

low-frequency words, since their frequent use allows them to persist as exceptions in

the phonological grammar.

The most intuitive application of the FAH to regular sound change makes the

assumption that gradient phonetic change results primarily from iterated biases in

the speaker’s phonetic implementation, and thus predicts that high frequency words

should always change faster than low-frequency words. This prediction found support

in claims based on early exemplar-based modeling work by Pierrehumbert (2001), in

which the speaker was central. However, it does not hold uniformly in empirical data.

I am aware of three corpus studies of word frequency effects on rates of sound change

across the lexicon.22 One of these studies found a result that is inconsistent with pre-

dictions of the FAH while not directly opposing them: Bermúdez-Otero et al. (2015)

found that /t/-glottaling in Manchester English is affecting words of all frequencies

at the same rate. Another found a result that is fully consistent with predictions of

the FAH: Hay and Foulkes (2016) found that /t/-tapping in New Zealand English

is affecting high-frequency words faster than low-frequency words. The final study,

however, found a result that opposes predictions of the FAH: Hay et al. (2015) found

that /E/-raising (and other processes in the same vowel shift) in New Zealand English

22I include only studies that aggregate across the lexicon because the assumption that speech
and/or sound change contain stochastic elements implies that sampling a few words is not sufficient
to reflect upon the existence of statistical tendencies tied to word frequency. For this reason, I exclude
from consideration a study by Tamminga (2014), which explores /ai/-raising in Philadelphia English
for various senses of like.
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affected high-frequency words slower than low-frequency words. I discuss these three

changes in more detail in Section 3.2.1; for now, I simply note that the FAH does not

explain why they should each show different word frequency effects. The existence

of different effects of word frequency on rate of change in different kinds of change

remains an unsolved puzzle in studies of regular sound change.

I propose that these differences can be understood by making the listener central

to regular sound change, as proposed in Chapter 2. I hypothesize that asymme-

tries in the rates with which regular sound change affects different words follow from

experimentally-established asymmetries in the robustness with which those words

can be recognized: high-frequency words can be recognized more robustly than low-

frequency words in the face of acoustic ambiguity. Under this hypothesis, differ-

ent asymmetries are observed in different kinds of regular sound change because

of the different implications they have for the acoustic ambiguity of the involved

phonemes. High-frequency words change at the same rate as low-frequency words

when a phoneme moves without encroaching on the acoustic space of another, with

no bearing on acoustic ambiguity; faster than low-frequency words when a phoneme

moves toward another, potentially increasing acoustic ambiguity; and slower than low-

frequency words when a phoneme moves away from another, potentially decreasing

acoustic ambiguity.

3.2 Word frequency effects

As described in Section 3.1, recent corpus-based studies have demonstrated a range

of different effects of word frequency on rates of regular sound change, but existing

theories struggle to account for these different effects satisfactorily. At the same time,

a host of experimental studies have identified that spoken word perception is subject

to biases related to word frequency, but these biases have not been incorporated into
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theories of sound change. In this section, I describe both sets of empirical observa-

tions, highlighting their parallels, to feed into the argument that they are connected.

3.2.1 Word frequency effects in sound change

To my knowledge, only three studies to date have explored the effect of word frequency

on rates of regular sound change across the lexicon. Intriguingly, these studies have

all yielded different results.

The first study concerns /t/-glottaling in Manchester English (Bermúdez-Otero

et al., 2015). /t/-glottaling refers to a sound change whereby /t/ between vowels

becomes increasingly likely to be realized as a glottal stop [P]; an example is mitten

coming to be pronounced as “mi’en”. This sound change is an instance of phonetic

drift : the phonetic realization of /t/ has drifted to [P] over time, without retreating

from or encroaching on the acoustic territory of any other phoneme. Bermúdez-Otero

et al. (2015) find that, while high-frequency words exhibit more /t/-glottaling at every

point of time, words of all frequencies have exhibited a change toward increased /t/-

glottaling at the same rate.

The second study concerns /t/-tapping in New Zealand English (Hay & Foulkes,

2016). /t/-tapping refers to a sound change whereby intervocalic /t/ is weakened to a

short voiced sound that may be notated [R] or [d]; an example is matter coming to be

pronounced more like “madder”. This sound change resembles the Pusher component

of a push chain: the phonetic realization of /t/ has increasingly encroached on the

acoustic territory of /d/ over time.23 Hay and Foulkes (2016) find that high-frequency

23Hay and Foulkes (2016) do not investigate whether the changes in /t/ have triggered related
changes in /d/, as would be expected in a push chain. For present purposes, however, the behavior
of /d/ does not matter; what matters is that /t/ advances toward it. The modeling of a situation
where /d/ exhibits minimal reaction to the advancement of /t/ is beyond the scope of the current
work, but could easily be accomplished by the assumption of a repulsive boundary provided by
paradigmatic or articulatory limits on the realization of voiced stops.
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words have exhibited a change toward increased /t/-tapping at a faster rate than low-

frequency words.

The third and final study of word frequency effects on rates of sound change

concerns /E/-raising in New Zealand English (Hay et al., 2015). /E/-raising causes

the vowel /E/ to be pronounced with the tongue higher in the mouth, as [e], making

New Zealand bet sound to non-New Zealanders like “bit”. This sound change is a

Pushee in a larger push chain24: /æ/ has increasingly moved toward /E/ in acoustic

space, pushing it along a related trajectory of change. Hay et al. (2015) find an

effect of word frequency which is different to that seen in the previous two studies:

high-frequency words have changed slower than low-frequency words.

In light of the difficulty of amassing enough good-quality data to reliably span

time, speakers, and the lexicon, it is not surprising that there exist only three studies

on word frequency effects on rates of sound change. Given the paucity of work in

this area, it is not currently possible to definitively solve the puzzle of word frequency

effects – but it is possible to make progress. To this end, I take the strong approach

of assuming that the three cases described here are representative, and I use them to

construct general predictions that can be fully tested as more data become available.

Under this strong approach, it is notable that word frequency effects on rate

of sound change only emerge in cases where two phoneme categories interact, with

sound change having implications for – or motivations in – the region of acoustic

ambiguity caused by category overlap. In /t/-glottaling, where the change has no

connection to category overlap, there are no word frequency effects. Conversely, in

/t/-tapping, where the change in question moves a category toward an ambiguous

region of category overlap, there is a high-frequency advantage, and in /E/-raising,

where the change moves a category away from an ambiguous region of category

24While the larger push chain has implications for multiple phoneme categories, I focus here on
establishing a thorough understanding of the /E/-raising component because it is least affected by
simplifications in the modeling of the exemplar space (see Section 3.3.3 for discussion).
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overlap, there is a low-frequency advantage. As I will show in Section 3.2.2, this

connection between acoustic ambiguity and word frequency effects is paralleled in

speech perception.

3.2.2 Word frequency effects in speech perception

The literature contains numerous empirical results showing that high-frequency words

are privileged over low-frequency words in speech perception, both when there is no

salient lexical competitor, and when there is. In situations without a salient lexical

competitor, relative to low-frequency words, high-frequency words are intelligible in

larger amounts of masking noise (Howes, 1957) and are classified as real words more

often (Luce & Pisoni, 1998) and faster (Forster & Chambers, 1973) in lexical decision.

In situations where multiple salient words compete for recognition, higher-frequency

words attract more attention early in processing (Dahan, Magnuson, & Tanenhaus,

2001) and are favored responses to degraded stimuli (Savin, 1963) or stimuli from a

dialect other than one’s own (Clopper, Pierrehumbert, & Tamati, 2010).

Furthermore, a series of phonetic categorization studies have shown word fre-

quency effects in the mapping of an acoustically ambiguous stimulus to one of two

words in a minimal pair. Fox (1984) observed that, when presented with ambiguous

stimuli on a “bad”–“dad” continuum, listeners were more biased toward bad responses

than expected (based on their responses to a /bæ/–/dæ/ continuum). He suggested

this might be because bad is more frequent than dad. Connine et al. (1993) provided

support for this suggestion from a range of continua between high- and low-frequency

words that differ in initial stop voicing (e.g. “best”–“pest”). Ambiguous stimuli on

these continua were more likely to trigger the high-frequency response (e.g. best) than

the low-frequency response (e.g. pest). Similar results were found by VanDam (2007).

Finally, de Marneffe, Tomlinson, Tice, and Sumner (2011) replicated this result using

manipulated French-accented English words with final stops (e.g. “tag” and “tack”),
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showing that the high-frequency response bias is not limited to situations where the

stimulus begins with an ambiguous sound. Furthermore, they showed that the bias is

not limited to minimal pairs with extreme frequency differences, but is found across

minimal pairs, with strength related to the ratio of word frequencies.

The experimental results reviewed above imply that – all else being equal, i.e.

absent effects of speech style or semantic context – the perceptual system is biased

toward the recognition of high-frequency words, especially in the case of acoustically

ambiguous tokens. The fact that word frequency effects on speech perception are

observed in the presence of acoustic ambiguity establishes a parallel with regular

sound change, suggesting that the two may be connected. In Section 3.3, I formalize

this connection within the listener-based model described in Chapter 2, establishing

a route through which word frequency effects on speech perception may provide a

plausible explanation for word frequency effects on rates of regular sound change.

3.3 Modeling word frequency effects

The effects of word frequency on sound change (Section 3.2.1) can be summarized

in the statement that high-frequency words are faster than low-frequency words to

move into, and slower to move out of, regions of acoustic ambiguity. Put another

way, high-frequency words can advance into an ambiguous region, and stay in it,

in spite of the strong repulsive force associated with it; thus, they are less sensitive

than low-frequency words to this repulsive force. As established in Chapter 2, in a

listener-based model, the repulsive force is generated by failures of word recognition,

through the process of the discriminability evaluation. Experimental results in speech

perception (Section 3.2.2) have shown that listeners are less likely to fail to recog-

nize high-frequency words than low-frequency words, particularly when acoustically

ambiguous. Consequently, passive processes in speech perception provide precisely
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the right frequency-based asymmetries in the repulsive force that are required to ex-

plain word frequency effects on rates of sound change. In this section, I formalize the

connection between frequency effects in sound change and in speech perception in an

extension of the listener-based model described in Chapter 2.

As in Chapter 2, I do not attempt to model the exact details of the three empirical

sound changes described in Section 3.2.1. Instead, I identify them with components

of the models of phonetic drift and push chains described in Chapter 2, and I aim

to capture the qualitative properties of word frequency effects in each of these com-

ponents. I identify Manchester English /t/-glottaling (Bermúdez-Otero et al., 2015)

with phonetic drift, in which I aim to generate no word frequency effects. I identify

New Zealand English /t/-tapping (Hay & Foulkes, 2016) with the Pusher in a push

chain and New Zealand English /E/-raising (Hay et al., 2015) with the Pushee. I

combine these two cases into a single model for convenience, because each represents

the interaction of two phoneme categories in a similar way, and each focuses on a

category fulfilling a different role in this interaction. In the modeled interaction, I

aim to generate faster change of high-frequency words than low-frequency words in

the Pusher, and slower change in the Pushee.

3.3.1 Approach

I assume that acoustically ambiguous tokens of high-frequency words are more ro-

bustly recognized and stored than similarly-ambiguous tokens of low-frequency words

(see also Hay et al., 2015, for more discussion). I encode this perceptual bias in the

model by varying the discriminability threshold, δ, with type frequency. Specifically,

I give tokens of high-frequency types lower δ than tokens of low-frequency types, mak-

ing them more discriminable, i.e. more likely to pass the discriminability evaluation

and be stored when encountered in the overlapping region between categories. This

assumption has no implications for the case of phonetic drift, as the discriminability
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evaluation cannot fail in a system containing only one category.

To test the hypothesis that frequency-based asymmetries in discriminability could

give rise to empirically observed frequency effects on rate of change, I conducted simu-

lations with frequency-sensitive δ, keeping all other parameters fixed at the previously-

tuned values (Section 2.4.2). I set the discriminability threshold (δ) to be a linear

function of type frequency (f):

δ(f) =

[
λ+

(
2(f − 1)

M − 1
− 1

)
φ

]1
0

(3.1)

where M is a constant representing the maximum type frequency in the system (here

M = 12) and where [x]10 evaluates to 0 if x < 0, 1 if x > 1, and x otherwise. I set

a ceiling at δ = 1 because δ > 1 would imply a disadvantage for real words in the

recognition of phonetically ambiguous stimuli (contra Ganong, 1980). I set a floor

at δ = 0 because it represents the limit case where tokens pass the discriminability

threshold regardless of the activations they incite.

Using Equation (3.1), I constructed 15 frequency-sensitive δ functions, which are il-

lustrated in Figure 3.1. Each δ function has an equivalent average (median-frequency)

value to one of the 3 constant δ values from the original simulations in Chapter 2 (λ ∈

{0.25, 0.50, 0.75}), and has one of 5 different slopes (φ ∈ {0.00, 0.25, 0.50, 0.75, 1.00}),

representing 5 different degrees of asymmetry in the discriminability of high-frequency

types relative to low-frequency ones.

The implications of a frequency-sensitive discriminability threshold can be illus-

trated by considering the mathematical formulation of the discriminability evalua-

tion, which is repeated in Equation (3.2). The value of the threshold, δ, has an

inverse multiplicative effect on category activations: the lower δ, the higher the cat-

egory activation for the purposes of the discriminability evaluation. In effect, then,

δ provides an activational boost to the identified category (through the identified
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Increasing discriminability of HF types relative to LF types
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Figure 3.1: Frequency-sensitive discriminability thresholds. δ functions investigated (black lines).
Lower δ indicates lower discriminability threshold, and hence greater ability to pass the threshold,
i.e. greater discriminability. Across all panels in a given row, δ is kept constant for median-frequency
types (dashed green lines). This median-frequency δ decreases moving up the rows, making discrim-
inability higher on average. Across all panels in a given column, the difference between δ for high-
frequency types and δ for low-frequency types (slope) is kept constant. This difference increases
(slope steepens) moving rightward across the columns, making high-frequency types increasingly
more discriminable than low-frequency types.
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type), which can help it overcome the difficulties of recognition in the face of acous-

tic ambiguity. In this way, the present formulation resembles the Logogen model of

Morton (1969), where high-frequency words have a higher resting activation than low-

frequency words. However, there is an important difference between the present model

and the Logogen model, concerning the form of the activational boost: in the present

model, it is multiplicative, but in the Logogen model, it is additive. The use of a mul-

tiplicative boost here means that the activation of an exemplar of a high-frequency

type is not on average higher than the activation of an exemplar of a low-frequency

type, independent of acoustic value. Rather, a token of a high-frequency type garners

more activation than an otherwise identical token of a low-frequency type (i.e. one

with the same acoustic value).

P (pass discriminability evaluation|Ai, Ao) =
1
δ
· Ai

1
δ
· Ai + 1 · Ao

(3.2)

3.3.2 Potential mechanisms

While the assumption that high-frequency types pass the discriminability threshold

more easily than low-frequency types is justified by results in the literature (Section

3.2.2), its implementation here – directly varying the discriminability threshold, δ,

with type frequency (Section 3.3.1) – does not follow from anything else within the

exemplar-based framework. On one hand, the implementational details are unim-

portant; the high-level impact of the corresponding perceptual bias on patterns of

sound change can be sufficiently demonstrated through any implementation within a

listener-based model. On the other hand, however, the appeal of a listener-based com-

putational model framed in Exemplar Theory is that it makes explicit the mechanistic

details of processes that give rise to observed behaviors. In this light, it is worthwhile

to consider the mechanisms through which the assumed frequency-based asymmetry

could arise, even though implementing them is beyond the scope of the present work.
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In what follows, I outline two theoretically-justified mechanisms that would give rise

to frequency-based asymmetries in the discriminability evaluation, and I discuss their

implications for frequency-based asymmetries in the typicality evaluation.

Under the first mechanism, when an incoming token is perceived, the activation of

exemplars is weighted by their structural compatibility with the token (their similarity

in phonological frame identity) in addition to their position within the activation

window (their similarity in acoustic quality of the target phoneme).25 Such weighting

represents a recognition of the fact that the exemplar space is multidimensional, with

dimensions corresponding to the phonological frame as well as the quality of the target

category realization (Pierrehumbert, 2002). Thus, the token “map” would activate an

exemplar of the type map with a given F1 value more than an exemplar of the type

pat with the same F1 value; exemplars of map would receive an activational boost

from their high structural compatibility with the token “map” (proportional to their

position within the activation window). Because a high-frequency type is represented

by more exemplars than a low-frequency type, its category receives more of these

activational boosts than it would in an equivalent situation with a low-frequency

type, yielding greater expected category activation for high-frequency types than for

low-frequency types. The ratio of category activations is thus expected to be greater

for a high-frequency type than for a low-frequency type, making it easier to pass

the discriminability evaluation. A consequence of this mechanism is that the greater

expected category activation for high-frequency types also makes them more likely to

pass the typicality evaluation.

Under the second mechanism, high- and low-frequency types project activation

windows of different sizes. In defining the exemplar-based Generalized Context Model,

25Exemplars may also be weighted by their contextual similarity with the token more generally.
Weighting according to the broad context provided by talker or situation may generate perceptual
adaptation effects, where the listener rapidly adjusts perceptual expectations and representations
while listening (Bradlow & Bent, 2008; Clarke-Davidson et al., 2008; Dahan et al., 2008; Kraljic &
Samuel, 2006; Norris et al., 2003).
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Nosofsky (1986, p. 41) states that the perceptual sensitivity parameter26, c, (inversely

related to the present activation window size parameter, α) “would be expected to

increase... as subjects gained experience with the stimuli”. Thus, the perception

of a token of a high-frequency type is expected to draw on fewer exemplars that

are far from the token in the perceptual-acoustic space than the perception of a

token of a low-frequency type. Consequently, the activations of both the intended

and the other category are expected to be lower for a token a high-frequency type

than for an equivalent token of a low-frequency type; in particular, the activation of

the other category is expected to be very small for a token of a high-frequency type

relative to a token of a low-frequency type, since most exemplars of the other category

are located far from the average token of the intended category. Thus, the ratio of

activations (identified/other) would generally be greater for high-frequency types than

for low-frequency types, making it easier to pass the discriminability evaluation. A

consequence of this approach is that the lower expected category activation for high-

frequency types would make them less likely to pass the typicality evaluation.

At present, I have not incorporated either of the mechanisms presented above into

the model, in order to focus precisely on a single process, but I believe that doing so

could be fruitful for future research. Since both mechanisms have implications for type

frequency effects in the typicality evaluation, which is akin to a filter on storage in

memory, they have the potential to speak to a large number of results in the literature

about frequency-based asymmetries in the way that tokens are stored in memory

(Benjamin, 2003; Bowers, 2000; Chee, Goh, Lim, Graham, & Lee, 2004; Diana &

Reder, 2006; Forster & Davis, 1984; Goldinger, Luce, & Pisoni, 1989; Kinoshita, 1995;

26The sensitivity parameter is assumed by Nosofsky (1986) to be constant across all types ex-
perienced by a given subject, but it could plausibly be extended to vary across types, given that
exemplar-based models assume that experience is accrued in a type-specific manner (Pierrehumbert,
2002). Indeed, Nosofsky (1991) considers the equivalent of such an extension and finds that it gives
superior description of human recognition data (in the visual mode), though not of classification
data.
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Schulman, 1967; Wagenmakers, Zeelenberg, & Raaijmakers, 2000; Wierda, Taatgen,

van Rijn, & Martens, 2013). The linking of implications for different perceptual effects

through a single mechanistic assumption highlights the unifying power that such an

assumption may have within a listener-based computational model.

3.3.3 Limitations

The formulation of a tractable computational model of sound change requires making

many simplifications. While these necessary simplifications enable isolated investiga-

tion of the role of a single perceptual process, they also place limitations on the ways

that the model results can be understood or applied. In this section, I discuss major

limitations resulting from necessary model simplifications, around three questions:

what is being predicted, how the predictions can be interpreted, and what empirical

sound changes can be used to test them.

The first limitation concerns the kind of behavior that the model predicts. The

force-balancing conception of the model ultimately concerns the eventual behavior of a

system, when all forces are balanced. Thus, the model predicts the relative positions

of high- and low-frequency types upon converging to a stable equilibrium state27;

I illustrate how these predictions work in Figure 3.2. Though the model predicts

convergence to an equilibrium state, the path that the system takes to get to that

equilibrium state depends upon the initial conditions (e.g. initial difference between

high- and low-frequency types). This dependence strongly affects the question of

whether high- or low-frequency types will be ‘ahead’ in a change at any particular

point in time, and is responsible for my decision to focus on rates of change. While

27Because the model assumes that the representations (e.g. lexical and phonological inventories)
and forces (e.g. production bias) are constant for all time, it is always driven toward a single equi-
librium state, even if this state is not reached within the specified iterations. In real sound systems,
the representations and forces may change readily, meaning that ‘convergence’ never actually occurs,
and instead the expected frequency effects change with the system.
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not a direct prediction of the model, the effect of frequency on rates of change is a

fairly robust indirect prediction that holds across most initial conditions.

The second limitation concerns the way that the model predictions can be in-

terpreted. Because the model is stochastic in nature, its predictions reflect what is

expected on average for a particular kind of change, not what actually happens in

any instance of that change. The model’s predictions are tendencies that should be

observable across many different instances of the same kind of change. For exam-

ple, even under the model settings that generate the strongest frequency effects in

the exploration presented here (see Section 3.4.2), only 70% of simulations yield the

corresponding qualitative pattern of results, some of which represent extremely small

effect sizes. Thus, the model predicts the existence of a certain number of null or

even conflicting results from empirical studies. Similarly, the model’s predictions for

frequency-based differences across types within a particular change are also tenden-

cies. The model does not predict that every pair of high- and low-frequency types

within a category will exhibit the relationship that is expected for the given change;

rather, the relationship is only expected to manifest when aggregating over the entire

lexicon (or a sufficiently large representative sample).

The final limitation concerns the empirical sound changes that can be used to test

the model predictions. This limitation is caused by simplifying assumptions about the

exemplar space: (i) it contains just one or two categories; (ii) it consists of a single

perceptual-acoustic dimension; and (iii) it extends without bound, with all areas

being equally ‘hospitable’ for exemplars. Relaxing any of these assumptions would

introduce complexities that are beyond the scope of the present work. Relaxing the

first assumption – allowing more than two categories into the model – would cause

the predicted frequency effects to depend upon the precise initial configuration of

categories. For example, in a system that includes three categories along a single

dimension, different effects will be predicted based on whether the middle category
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(A)

(B)

Figure 3.2: Illustration of how the model predictions work. Assume that the sound change is causing
increase along some perceptual-acoustic dimension. (A) illustrates change in the difference along
the perceptual-acoustic dimension between high- and low-frequency subdistributions of the cate-
gory over time, while (B) illustrates potential trajectories of sub-distribution movement that could
generate the patterns in (A). Both illustrations include possibilities from different initial conditions
(matched colors), i.e. different relative positions of the high- and low-frequency subdistributions at
the beginning of the change. The model predicts eventual convergence to a fixed difference (dotted
black line in (A); fixed separation of trajectories in (B)). This prediction is not robustly related
to a prediction of which types are ‘ahead’ in the change at any given point in time. Half of the
initial conditions (orange, blue) have high-frequency types ahead (above the dashed gray line in (A);
higher value of the high-frequency trajectory in (B)) at all points in time, while the other half (green,
purple) have low-frequency types ahead at first and high-frequency types ahead later. The model’s
prediction is more robustly related to a prediction of differences in rates of change. Most of the
initial conditions (blue, green, purple) have high-frequency types change faster than low-frequency
types (positive slope in (A); steeper slope of the high-frequency trajectory in (B)).
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begins closer to the first or last category. Relaxing the second assumption – expanding

to a multi-dimensional exemplar space – would cause the predicted frequency effects to

depend upon the alignment of the category trajectories. For example, if the Pusher is

moving horizontally, different frequency effects will be predicted based on whether the

Pushee also moves horizontally or instead moves with a vertical component. Finally,

relaxing the third assumption – adding bounds to the exemplar space that repel

nearby exemplars, e.g. via physical limits of articulation – would cause the predicted

frequency effects to depend upon the role of those bounds in the change. For example,

in a two-dimensional system28, different frequency effects will be predicted based on

whether Pushee movement along a certain dimension is caused by repulsion from the

Pusher or from the bounds of the space. The limitations surrounding the exemplar

space are the reason that I focus on just the /E/-raising component of the New Zealand

short front vowel shift (Hay et al., 2015). The whole push chain involves up to four

categories on different trajectories in a two-dimensional space; /E/-raising is the only

component that involves movement of a category (/E/) along the same trajectory as

its pusher (/æ/) but not its pushee (/I/).

3.4 Results

I hypothesized that incorporating an experimentally-established perceptual bias into

the listener-based computational model of sound change would generate effects of type

frequency on rate of change, mirroring the effects seen empirically at a high level. In

Section 3.3.1, I laid out the details of this approach, as varying the discriminability

threshold with type frequency. In this section, I report the results of simulations

28In a one-dimensional system, a bounded exemplar space would cause movement to cease even-
tually, but would not otherwise interact with frequency effects. This lack of interaction allows the
model to be applied to movement that eventually ceases – as in /t/-glottaling and -tapping – even
though movement never actually ceases in simulations.
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with frequency-sensitive discriminability threshold, both for phonetic drift of a single

category and for the interaction of two categories.

3.4.1 Phonetic drift

For phonetic drift – where an isolated category moves about the exemplar space – the

goal is to produce change of all types at the same rate, mirroring empirical data from

Manchester English /t/-glottaling (Bermúdez-Otero et al., 2015). Under a listener-

based approach, this goal seems readily attainable, because phonetic drift involves

no appeal to acoustic ambiguity and thus contains no role for the discriminability

evaluation.

Figure 3.3 shows how both low- and high-frequency types move over time, averaged

across 1000 simulations, for representative parameter settings under different degrees

of bias. The centroids of the low- and high-frequency sub-distributions change in

parallel (i.e. at the same rate), supporting the hypothesis that sound change without

adverse implications for the listener is frequency-independent. I take this result to

mean that a listener-based focus can explain the lack of word frequency effect on

rates29 of /t/-glottaling in Manchester English (Bermúdez-Otero et al., 2015).

The demonstration of a lack of frequency effect on rates of phonetic drift is an

important contribution not only empirically, but also theoretically. It counters promi-

nent intuitions in previous usage-based approaches (Bybee, 2002; Phillips, 1984; Pier-

rehumbert, 2001) that the automation of biased production strategies should cause

29I emphasize that my focus is on the lack of word frequency effects on rate of change, and not on
the existence of a stable frequency effect whereby high-frequency words exhibit a fixed amount more
/t/-glottaling than low-frequency words at every point in time. To account for this stable effect, the
model would have to assume that high-frequency words are more prone to hypoarticulation than
low-frequency words (e.g. Bell, Brenier, Gregory, Girand, & Jurafsky, 2009; Gahl, 2008) and that
the initial conditions reflect this asymmetry (rather than being neutral, as at present). The same
assumptions are required in the explanation put forward by Bermúdez-Otero et al. (2015).
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Figure 3.3: Frequency effects in phonetic drift: category movement. Results of simulations with a
single category (σ = 0.8) subject to varying degrees of bias, illustrating differences between low-
frequency (solid) and high-frequency (dashed) types. For all degrees of bias, the centroid of the
category distribution advances at the same rate for both low- and high-frequency types.

high-frequency types to change faster than low-frequency types, since they are pro-

duced (with bias) more often. The primary reason for this difference from previous

approaches is that the present model considers both the type (word) level and the

category (phoneme) level, allowing types of different frequencies to be represented

by different numbers of exemplars. Even though high-frequency types are produced

(with bias) more often than low-frequency types, they are also represented by more

exemplars (Hintzman & Block, 1971). Thus, an isolated production has less influence

on the representation of a high-frequency type than on that of a low-frequency type,

counterbalancing the difference in rates of production (see also Sóskuthy, 2014). I

illustrate the differences between previous usage-based models and the present model

schematically in Figure 3.4; for discussion from a mathematical point of view, see

Appendix D.

Although the centroids of the sub-distributions of exemplars of high- and low-

frequency types changed at the same rate in these simulations, the sub-distributions

themselves did not evolve identically; rather, they exhibited differences in changes

in width. While the category as a whole maintained its width throughout the sim-

ulations, the sub-distribution corresponding to high-frequency types narrowed and

the sub-distribution corresponding to low-frequency types widened, as demonstrated

in Figure 3.5. This result reflects a difference in sensitivity to the typicality force:
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Figure 3.4: The interaction of type frequency and bias. Schematic illustration of underlying intu-
itions in prominent usage-based models (A; e.g. Pierrehumbert, 2001) and the present model (B).
Different types are represented by different shapes and colors, acoustic value is represented by verti-
cal position, and movement due to bias is represented by red arrows (one per production of the type).
Each case depicts a high-frequency type (black circles; frequency 4) and some low-frequency types
(colored angled shapes; frequency 1). In (A), shapes represent the location of the mean acoustic
value for each type, and type frequency is indicated by numbers; in (B), the exemplar distribution
of each type is represented by individual exemplars, and type frequency is indicated by number
of exemplars. The left panel shows an initial condition, and the right panel shows the expected
(average) result after the amount of time it takes to produce the high-frequency type 4 times. (A)
Intuition underlying prominent models; comparing a single type of each frequency. In the expected
amount of time it takes to produce the high-frequency type 4 times (5 iterations), the low-frequency
type is expected to be produced once. Each production of a type adds bias and updates that type’s
mean. Since the high-frequency type is produced 4 times more often than the low-frequency type, it
is subjected to 4 times as much bias. The high-frequency type thus evolves at a faster rate than the
low-frequency type. (B) Present model; comparing the aggregate over exemplars of each frequency.
In the expected amount of time it takes to produce the high-frequency type 4 times (8 iterations),
the four low-frequency types are each expected to be produced once. Each production of a type adds
bias to a single exemplar of that type. Since each exemplar of each type is produced once, the bias
is distributed over the exemplars. While the high-frequency type is subjected to more bias than any
low-frequency type, it distributes this bias over 4 exemplars, which is equivalent to the distribution
of bias over 4 exemplars of the 4 different low-frequency types in aggregate. The sub-distributions
of high- and low-frequency exemplars thus evolve at the same rate.



CHAPTER 3. WORD FREQUENCY IN SOUND CHANGE 84

Figure 3.5: Frequency effects in phonetic drift: category width. Results of simulations with a single
category (σ = 0.8) subject to varying degrees of bias, illustrating differences between low-frequency
(solid) and high-frequency (dashed) types. For all degrees of bias, the category distribution widens
for low-frequency types, but narrows for high-frequency types. Category skewness increases with
bias (β), causing apparent category width also to increase.

high-frequency types are more sensitive to it than low-frequency types.

High-frequency types have increased sensitivity to the typicality force – and to

perceptual forces in general – as an indirect result of an interaction between assump-

tions about production and storage. Recall that the selection of an initial target

for a token proceeds by copying the acoustic value of an exemplar of the given type

(Section 2.3.2.2), and that a token is unlikely to be stored if it falls in a perceptually-

disadvantaged (e.g. low-typicality) area of the exemplar space (e.g. Section 2.3.2.8).

Consequently, an exemplar in a perceptually-disadvantaged area (e.g. an atypical

exemplar) is less likely to generate a token that will overwrite an exemplar in a

perceptually-advantaged area (e.g. a typical exemplar) than vice-versa. In this way,

the target-copying production mechanism provides escape routes from perceptually-

disadvantaged areas of the exemplar space, yielding boosts to perceptual forces. When

an exemplar of a high-frequency type falls in a perceptually-disadvantaged area, it is

likely to have many escape routes, as there are many other exemplars of the same type

that can serve as production targets in perceptually-advantaged areas. The opposite

is true for an exemplar of a low-frequency type, as there are few other exemplars of

the same type. With more escape routes, a high-frequency type gets more boosts to

the perceptual forces.
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While this sensitivity difference is interesting, it is a side-effect of model assump-

tions and should not be interpreted as theoretically meaningful. If anything, it serves

to illustrate the importance of being thorough and careful with modeling assump-

tions, and of not taking results at face value without considering the possibility that

they may come from adverse interactions of assumptions. I present the sensitivity

difference only in the interest of completeness; none of the key results presented here

or elsewhere rely on it in any way.

3.4.2 Two-category interactions

For two-category interactions (modeled as push chains) – where the movement of one

category in the exemplar space has implications for another – there are two goals, one

for each category. For the Pusher (i.e. the category subject to production bias), the

goal is to produce faster change in high-frequency types than in low-frequency types,

mirroring empirical data from New Zealand English /t/-tapping (Hay & Foulkes,

2016). For the Pushee (i.e. the category retreating from the other due to dispersion),

the goal is to produce slower change in high-frequency types than in low-frequency

types, mirroring empirical data from New Zealand English /E/-raising (Hay et al.,

2015). The simulations presented here attempt to meet both goals through the single

approach of varying the discriminability threshold, δ, with type frequency.

The results of varying δ with type frequency are shown in Figure 3.6. When

average discriminability is sufficiently high and high-frequency types are sufficiently

more discriminable than low-frequency types, the goals are met: high-frequency types

change faster than low-frequency types in the Pusher and slower than low-frequency

types in the Pushee. More generally, as the frequency-based asymmetries in the

discriminability evaluation grow, the desired frequency-based asymmetries in rates

of change become stronger and more robust, for both categories. I take this result

to mean that a listener-based focus containing a single, experimentally-established
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perceptual bias can explain the different word frequency effects on rates of /t/-tapping

(Hay & Foulkes, 2016) and /E/-raising (Hay et al., 2015) in New Zealand English.

The result obtains because a frequency-based discriminability threshold changes

the sensitivity of high- and low-frequency types to the category-level discriminability

force. As the chosen asymmetry in thresholds grows, the sensitivity shrinks for high-

frequency types and grows for low-frequency types. To balance category-level forces,

the sub-distribution of high-frequency exemplars is shifted closer to the overlapping

region, where the local discriminability force is larger, and vice-versa for the sub-

distribution of low-frequency exemplars.30 The size of the frequency effect on rate

of change is thus a function both of the average discriminability, which determines

the size of the discriminability force on average, and of the degree of frequency-based

asymmetry in discriminability thresholds, which determines the difference in sensi-

tivity to the discriminability force. Since high-frequency types are a priori more sen-

sitive to perceptual forces than low-frequency types, due to the interaction between

assumptions about production and storage discussed in Section 3.4.1, reversed fre-

quency effects are observed when the frequency-based asymmetry in discriminability

thresholds is small (Figure 3.6). As the threshold asymmetry grows, it first overcomes

this prior difference in sensitivity, and then introduces the opposite difference, which

generates the desired frequency effects.

30The separation of exemplar sub-distributions is insufficient on its own to lead to a category
split. All exemplars within a category are subjected to the same typicality force, which squeezes
them toward a single mode. Moreover, the model treats frequency as a continuous variable, and a
category is made up of sub-distributions spanning the entire frequency range; the discussion of two
extremes here is for illustrative purposes only.
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Increasing discriminability of HF types relative to LF types

Figure 3.6: Frequency effects in two-category interactions. Results of varying discriminability thresh-
old (δ) with type frequency for representative sets of parameter values (sets (4), (10), and (16) from
Table B.2; all other sets give similar results). The vertical axis shows the extent to which high-
frequency types are ahead of low-frequency types in the Pusher (red) or Pushee (blue), averaged
over 1000 runs for each parameter setting. A positive slope represents a faster rate of change of
high-frequency types compared to low-frequency types. All curves end with a horizontal section
corresponding to a stable equilibrium. Panels are laid out according to δ function, as in Figure 3.1.
Moving rightward across the columns, high-frequency types become increasingly more discriminable
than low-frequency types. This shifts the end of the curve upward for the Pusher (red), causing
positive-sloping sections where high-frequency types change at a faster rate than low-frequency types,
and the reverse for the Pushee (blue). This effect grows more pronounced moving upward across the
rows, as discriminability increases on average. When average discriminability is sufficiently high and
high-frequency types are sufficiently more discriminable than low-frequency types (i.e. sufficiently
close to the upper-right panel), the model generates robust frequency effects resembling those seen
empirically. The reverse effects seen close to the lower-left panel result from an interaction between
assumptions about production and storage.
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3.5 Additional simulations

This dissertation is about the centrality of the listener to language change, and the

discussion in this chapter has correspondingly focused on the role of perceptual biases

in the generation of word frequency effects on rates of sound change. However, the

speaker also plays a role in language change, and has been considered crucial to expla-

nations of word frequency effects in sound change in previous usage-based approaches

such as the FAH (Bybee, 2002; Phillips, 1984). In this section, I present two sets of

additional simulations designed to show that the speaker is not as important as the

listener for generating frequency effects in the present model (i.e. without some form

of active strategy).

In these simulations, I consider two interacting categories, and I alter the impact

of the speaker by varying the application of production bias. I first present simula-

tions where both categories receive production bias, to demonstrate that the existence

of frequency effects is not tied to overall category movement. I then present simula-

tions where neither category receives productions bias, to demonstrate that frequency

effects are also not tied to bias and can be obtained even in the absence of speaker in-

fluence. In both cases, I continue to refer to the categories as “Pushee” and “Pusher”

to allow comparison with the earlier results. These names should only be taken as

convenient, not as indicating the kind of movement exhibited by the category or the

bias to which it is submitted.

3.5.1 Categories biased together

To demonstrate that the model’s results on frequency effects stem from the internal

reorganization of categories due to perceptual asymmetries, rather than from the

movement of categories due to the application of production biases, I conducted

simulations in which the two categories were biased together and didn’t move. I
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Figure 3.7: Frequency effects without category movement. Results of simulations involving two
categories biased together (solid line) or a single Pusher category biased toward the other (dashed
line), showing the centroid (left panel) and the frequency effect (right panel) of the Pushee. While
the centroid hardly moves in the case with two categories biased together, a robust frequency effect
is still observed, which is at least as large as the effect observed when just the Pusher is biased.

subjected the Pusher to a positive bias (half the size of that used in Section 3.4.2)

and the Pushee to a negative bias of the same magnitude. I ran 1000 models for 5000

iterations each, using a single set of parameters (parameter set (10) from Table B.2)

and a single δ function (in which the discriminability threshold decreased linearly from

a value of 1 for the lowest-frequency types to a value of 0 for the highest-frequency

types); the results for other parameters and δ functions are similar.

In these simulations, both the Pushee and the Pusher stayed approximately still

(with slight movement of the centroids due to reversion to the modes, which were

slightly off-centered in the initialization data). The results for the Pushee are shown

in Figure 3.7. As can be seen, while biasing the categories together results in almost

no overall movement, it still yields a Pushee frequency effect: high-frequency types in

the Pushee become peripheral slower than low-frequency types. This frequency effect

is at least as large as the effect observed when just the Pusher is biased.

The fact that a frequency effect is observed even without category movement im-

plies that the frequency effects predicted by the model are not dependent on category

movement. Rather, frequency effects arise as a result of internal reorganization of

categories to balance forces from production and perception, as discussed in Section
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3.4.2. The fact that the same kind of frequency effect is obtained under two qualita-

tively different kinds of production force implies that it is driven by the perceptual

forces, i.e. by processes in the listener rather than the speaker.

3.5.2 No bias

Having established that the model’s results on frequency effects are independent of

category movement due to production bias, I conducted further simulations to demon-

strate that they are independent of production bias altogether. To accomplish this,

I removed the bias entirely, such that neither category was biased in any way. I ran

1000 models for 5000 iterations each, using the same settings as in Section 3.5.1.

In these simulations, the Pushee and the Pusher were repelled from one another,

and gradually drifted apart. This repulsion was caused by the discriminability force,

which caused perceptual downweighting of tokens produced near the region of cate-

gory overlap. Its gradualness was a result of the typicality force, which caused similar

downweighting of tokens produced far from the mode of each category. Taken to-

gether, these two forces yield the hyperspace effect (Johnson, Flemming, & Wright,

1993): from the listener’s perspective, the optimal production target for a category

is hyperarticulated – i.e. located further away from other categories than the mode –

but not so much as to no longer resemble natural speech.

The results for the Pushee are shown in Figure 3.8. As can be seen, the degree

of repulsion decreases in the absence of Pusher bias as the two categories separate,

yielding less category movement over time. However, the frequency effect appears to

be unaffected: high-frequency types change slower than low-frequency types in the

Pushee, regardless of whether there is production bias in the system or not. The

fact that frequency effects are still observed even when production bias is removed

confirms that such results in the model follow from the listener, not the speaker.

The role of the speaker is to enable prolonged category interaction, by counteracting
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Figure 3.8: Frequency effects without production bias. Results of simulations involving two cate-
gories without bias (solid line) or a single Pusher category biased toward the other (dashed line),
showing the centroid (left panel) and the frequency effect (right panel) of the Pushee. While the
removal of bias causes decreased centroid movement, it does not affect the frequency effect.

the repulsion of the Pusher with production bias – but interaction does not have to

be prolonged in this way in order for categories to internally reorganize and display

frequency effects.

3.6 Discussion

The simulations in this chapter have demonstrated that perceptual biases likely play

a causal role in the generation of word frequency effects in real-life sound changes. I

have assumed a single perceptual bias in the form of a frequency-based discriminability

threshold, which is experimentally supported (Section 3.2.2). Word frequency effects

on sound change that match those seen empirically in two-category interactions are

only generated when the bias is included in the model, at sufficient strength; when it

is excluded, or set too weakly, the model generates qualitatively different (unattested)

effects (Section 3.4.2). Thus, in the model at least, the bias may be said to cause the

word frequency effects.

The fact that the cause of empirically-established frequency effects in the model is

a perceptual process lends crucial support to the listener-based approach to language
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change. The frequency effects arise through the listener, not the speaker; correspond-

ingly, they are not removed when the influence of the speaker is minimized (Section

3.5). In the present model, high-frequency types and low-frequency types all show the

same sensitivity to speaker-based forces (bias and imprecision), and there is no im-

petus for the speaker to produce tokens of high-frequency types in a hypoarticulated

manner or tokens of low-frequency types in a hyperarticulated manner (cf. Lindblom,

1990). Rather, tokens of high-frequency types are more robustly recognized than to-

kens of low-frequency types, leading them to be more likely to be stored when they

are in the overlapping region between categories. Consequently, the high-frequency

sub-distribution will come to be dominated less by ‘clear’ exemplars (from outside of

the overlapping region) than the low-frequency sub-distribution, and the asymmetry

in perception will drive asymmetries in production without the speaker ever needing

to make an explicit effort to adjust the clarity of their productions.

The downplaying of the role of the speaker runs counter to the intuition underly-

ing prominent usage-based approaches such as the Frequency Actuation Hypothesis

(FAH; Bybee, 2002; Phillips, 1984). In the FAH, the speaker’s iteration of a pro-

duction bias is assumed to cause high-frequency words to change at a faster rate

than low-frequency words, as they are produced (with the bias) more often. The

simulations in this chapter have demonstrated that this assumption does not hold

in a listener-based approach (Section 3.4.1): the fact that high-frequency words are

produced very often is counterbalanced by the fact that each stored token of a high-

frequency word has very little influence on the word representation, due to its high

exemplar density. This demonstration of a lack of word frequency effect on rates of

sound change – together with the demonstration of a low-frequency advantage in some

circumstances (Section 3.4.2) – is a novel contribution to the literature on Exemplar

Theory. It undermines criticisms that have been levied against exemplar-based mod-

els based on their perceived overprediction of high-frequency advantages in sound
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change (Abramowicz, 2007; Bermúdez-Otero et al., 2015; Dinkin, 2008; Tamminga,

2014).

In addition to contributing to the theory of language change, the extension of the

listener-based model in this chapter also contributes to the empirical study of language

change. The extended model was successful in capturing key properties of three known

empirical studies of word frequency effects on rates of sound change (Bermúdez-Otero

et al., 2015; Hay & Foulkes, 2016; Hay et al., 2015), but its implications extend more

broadly. The success of the model follows from the conception of sound change as the

result of balancing emergent forces that stem from both the speaker and the listener,

where words of different frequencies are crucially assumed to be differentially sensitive

to the perceptual forces in the listener. This force-balancing conception of sound

change is entirely general, allowing the model to make predictions for word frequency

effects in sound changes beyond the three cases examined here. In addition, the

formal statement and computational implementation of the model allows it to make

such predictions with clarity, avoiding the gaps and uncertainties that can befall

informally-stated, unimplemented approaches.

3.6.1 General predictions

Beyond the three sound changes examined in this chapter, the extended listener-based

model predicts a (probabilistic) typology of word frequency effects in different kinds

of sound change. These predictions all follow from the implications of the change

for acoustic ambiguity, given the perceptual bias in the discriminability evaluation

that allows high-frequency types to be more robustly recognized than low-frequency

types in the face of acoustic ambiguity. In changes that do not affect the acoustic

ambiguity of the phoneme undergoing change, the model predicts all words to change

at the same rate. In changes that act (locally) to increase the acoustic ambiguity

of the phoneme undergoing change (via movement toward another phoneme in the
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acoustic space), the model predicts high-frequency words to change at a faster rate

than low-frequency words. The reverse result is predicted for changes that act to

decrease the acoustic ambiguity of the phoneme undergoing change (via movement

away from another phoneme in the acoustic space).

By considering the implications for acoustic ambiguity in different kinds of regu-

lar sound change, the listener-based model generates the typology of predictions laid

out in the first column of Figure 3.9. These predictions are particularly interesting

because they fit the existing empirical results more closely than those of other ap-

proaches. As previously stated, empirical results in the literature align better with

the listener-based model’s predictions than with those of the FAH (Bybee, 2002;

Phillips, 1984),31 which draws different frequency effects based on the differentiation

between articulatory biases and lexical analogy. Empirical results also align better

with the listener-based model than with a plausible alternative inspired by the FAH

(described below), which draws different frequency effects based on the differentiation

between articulatory biases and dispersion. In what follows, I work through the logic

underlying these three approaches to generate predictions for word-frequency effects

in various different kinds of sound change, which I compare schematically in Figure

3.9.

As discussed in Section 3.1, the FAH makes a distinction between physiologically

motivated changes at the surface phonetic level, which are driven by articulatory

biases and assumed to affect high-frequency words fastest, and non-physiologically

motivated changes at the level of phonological grammar, which are driven by lexical

analogy and assumed to affect low-frequency words fastest. While intuitively attrac-

tive, this distinction does not make clear predictions for all kinds of sound change.

31It is difficult to make a direct comparison between the predictions of the listener-based model
and those of the FAH, since they concern different properties of change (rate versus actuation). To
facilitate comparison, I assume neutral initial conditions, i.e. no relevant differences based on word
frequency before the onset of the change.



CHAPTER 3. WORD FREQUENCY IN SOUND CHANGE 95

Change Listener-based FAH Alternative

Drift

Push chain

Merger
(one-way)

Pull chain

Split
(one-way)

HF LF HF ?

HF LF ? HF 

HF ?

?LF 

HF LF 

LF HF 

HF

HF 

HF= HF

Figure 3.9: General predictions for frequency effects. Comparison of the qualitative predictions of
the present listener-based model to those of the Frequency Actuation Hypothesis (FAH; Bybee, 2002;
Phillips, 1984) and those of an alternative proposal (see text). Arrows indicate movement over time,
and stars indicate movement due to phonetic biases. Red indicates a high-frequency advantage,
blue indicates a low-frequency advantage, and black indicates no frequency advantage. In the FAH
predictions, not every case is clear-cut (marked by ?; see text), introducing cases where there could
be a high-frequency advantage or no frequency advantage (brown, no star) or where there could
be a high-frequency advantage or a low-frequency advantage (purple, star). The predictions of the
listener-based model and the proposed alternative are identical for push chains and mergers, but
different for phonetic drift, pull chains, and splits.
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For example, the pushee in a push chain may be argued to move in response to the

same articulatory bias that moves the pusher, or in response to dispersive pressures

from perception. If the movement is due to articulatory bias, then the FAH predicts

a high-frequency advantage, but if it is due to dispersive pressures, then it is unclear

what the FAH predicts, as such pressures are based in neither articulation nor anal-

ogy. Similarly, sound changes such as merger affect both surface realizations and the

phonological grammar and may be driven by articulatory biases or lexical analogy. In

such cases, it is unclear whether the FAH predicts a high- or low-frequency advantage.

How can an approach make clearer predictions than the FAH, while maintaining its

core claim that high-frequency words change faster than low-frequency words in phys-

iologically motivated changes and slower in non-physiologically motivated changes?

The following alternative approach represents one plausible attempt to do so, based

on two key assumptions. The first assumption is that a phoneme category may par-

ticipate in regular sound change only due to articulatory biases or due to dispersive

pressures, and that the number of categories subjected to articulatory biases should

be minimized. Thus, for example, the pusher in a push chain moves due to articula-

tory biases, but the pushee moves due to dispersive pressures. The second assumption

is that articulatory bias – a physiological motivator of sound change – affects high-

frequency words fastest, while dispersive pressures – non-physiological motivators of

sound change – affect low-frequency words fastest. The result is an approach that

assumes that sound change occurs in response to pressures from both the speaker and

the listener, like the listener-based model, but that prioritizes the speaker over the

listener, unlike the listener-based model. Because any sort of sound change must be

motivated somehow – whether by biases in production or by pressures from percep-

tion – this approach would predict that every sound change should show some word

frequency effect. It would predict high-frequency advantages whenever a phoneme is

subject to a production bias, and low-frequency advantages in all other movements.
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As shown in Figure 3.9, the alternative approach makes the same predictions as

the listener-based model for push chains and mergers, and both are able to account

for the observed word frequency effects in /t/-tapping (Hay & Foulkes, 2016) and /E/-

raising (Hay et al., 2015) in New Zealand English. I take this observation as support

for the general usage-based framework that both approaches take, in which regular

sound change occurs in response to forces from both speakers and listeners, due to

both articulatory biases and dispersive pressures. However, the predictions differ

for phonetic drift, and the empirical observations from /t/-glottaling in Manchester

English align with the prediction of the listener-based model. I take this observation as

initial support for the listener-based model over the alternative, and correspondingly

for treating the listener rather than the speaker as the driver of word frequency effects

in regular sound change. Finally, the predictions completely oppose one another for

pull chains and splits, but I lack any data at present that can adjudicate between

them. Of course, many more empirical results are required to test and compare the

predictions in full, given their probabilistic nature (see Section 3.3.3).

3.6.2 Computational modeling and sound change

The computational model extended in this chapter is a significant contribution to the

field, both as crucial support for the centrality of the listener to regular sound change,

and as an object in its own right. It has allowed me to remove gaps and uncertainties

in predictions by ensuring that they are holistic and internally consistent, to hold

intuition up to scrutiny by putting it on a formal foundation, and to clarify the

causal relations between assumptions and predictions.

Computational modeling ensures that predictions are holistic and internally con-

sistent. In the present model, all sound change is underpinned by movement of

exemplars due to forces based in the speaker and the listener, and word frequency

effects are driven by listener-based forces, in entirely general ways. Since every kind
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of sound change can be conceived of in relation to these forces, the model makes

clear (probabilistic) predictions for every kind of sound change (modulo the limita-

tions discussed in Section 3.3.3). The same is not true of previous hypotheses that

have not been implemented in computational models, such as the FAH (see Section

3.6.1). Because the FAH only addresses sound changes caused by articulatory biases

or lexical analogy, it does not extend to changes which do not seem to be caused by

either (e.g. the pushee in a push chain), and it makes unclear predictions for changes

which could plausibly be caused by both (e.g. merger).

Furthermore, because the present model is a formal implementation, it allows in-

tuition to be held up to to scrutiny. For example, in Section 3.4.1, I showed that

the model does not support the widespread intuition that exemplar-based models al-

ways predict high-frequency words to change fastest in response to production biases

(Abramowicz, 2007; Bermúdez-Otero et al., 2015; Dinkin, 2008; Tamminga, 2014).

This intuition relies in part on a conflation of type frequency and category frequency.

The present model represents types and categories at separate levels, making it clear

that type frequency affects not only rate of production, but also density of exemplar

distribution. These two effects counteract one another in determining how quickly

the type moves in response to bias (see also Appendix D for discussion from a math-

ematical point of view).

Finally, the present model has allowed me to clarify the causal relations between

assumptions and predictions. By showing that the model predicts different frequency

effects with the assumption of a high-frequency discriminability advantage than with-

out it (Section 3.4.2), I have established that word frequency effects on rate of change

can be causally related to word frequency effects on perception. The model also al-

lows for investigation of the influence that changing certain assumptions would have

on predictions. For example, there are at least two possible mechanisms through

which the existence of asymmetries in discriminability evaluation can follow from
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the exemplar-based architecture of the model (i.e. under a constant discriminability

threshold, δ), which make different predictions for asymmetries in typicality eval-

uation (Section 3.3.2). In the development of ever-more-sophisticated models that

approximate the complexities of natural language use and change, it is crucial to un-

derstand fully the implications of assumptions, both for the accurate identification of

the cause of predicted behaviors, and for the potential unification of different observed

behaviors under common assumptions.

The study of regular sound change is becoming increasingly rigorous with the

availability of collections of speech recordings that span long periods of (real or ap-

parent) time. The combination of this empirical data with appropriate computational

modeling will be central to testing predictions and hypotheses about the connections

between speech perception and regular sound change.

3.7 Summary

In this chapter, I have shown how a listener-based approach to language change

allows a single perceptual bias to give rise to different effects of word frequency in

different kinds of sound change. I have extended the listener-based computational

model described in Chapter 2 with an experimentally-established frequency-based

asymmetry in discriminability thresholds, and I have shown that this extension allows

the model to generate word frequency effects that match all of the empirical results

that exist at the time of writing (Bermúdez-Otero et al., 2015; Hay & Foulkes, 2016;

Hay et al., 2015). In addition, I have shown that this extension predicts a typology

of word frequency effects across many different kinds of sound change, which opens

doors to many further empirical studies.

The listener-based approach is both powerful and flexible. The success of the

approach in predicting empirically-observed word frequency effects on rates of sound
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change provides key support to the claim that the listener is central to sound change.

I do not intend this claim to imply that the speaker is unimportant, but rather that

the speaker cannot be the sole primary influence on sound change. I acknowledge that

aspects of production are widely attested and accepted to vary with word frequency, at

least in the case of reduction (e.g. Bell et al., 2009). However, given an exemplar-based

production-perception loop, it is not necessary to assume that word frequency-based

biases in production are responsible for generating effects of word frequency on rate of

change, as such effects can follow straightforwardly from experimentally-established,

passive but powerful biases in perception.



Chapter 4

Social attitudes in lexical adoption

In Chapter 3, I showed how a listener-based approach to language change predicts

asymmetries in the rate at which words of different frequencies are affected by sound

change, based on asymmetries in how words of different frequencies are processed in

speech perception. But language change is bigger than just sound change, and is

affected by more than just frequency. A comprehensive approach to language change

must address changes in discrete linguistic elements as well as continuous ones, and

must address the large role of social factors in structuring language use and change

(Weinreich et al., 1968). In this chapter, I adopt a broader focus on the spread

of lexical items across different social groups, and I show how the principles of a

listener-based approach extend to situations of this type. My aim is to demonstrate

how a listener-based approach provides a parsimonious explanation of effects of social

attitudes on language change, through reference to known biases in speech perception,

in a parallel fashion to the explanation of word frequency effects in sound change

offered in Chapter 3.

This chapter is structured as follows. First, I lay out the general focus of extending

the listener-based approach to socially-structured changes in discrete linguistic ele-

ments, as well as the specific empirical focus of this chapter on the spread of the word

101
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eh across ethnic groups in New Zealand (Section 4.1). Next, I ground the extension

of the listener-based approach to the realm of social factors with demonstrations of

the relevance of social factors to language change, and with psycholinguistic evidence

that social information and attitudes affect speech perception (Section 4.2). Using

this grounding, I show in general how a listener-based approach predicts socially-

based asymmetries in language change (Section 4.3). Then, I zoom in to the specific

case of inter-ethnic adoption of eh in New Zealand (Section 4.4), for which I outline

a corpus study (Section 4.5). I show that the results of the corpus study are consis-

tent with the listener-based approach and support the hypothesis that the adoption

of eh has increased over time due to improvements of social attitudes (Section 4.6).

Finally, I discuss the general advantages of a listener-based approach to social factors

in language change, together with the predictions the approach makes for other cases

of language change (Section 4.7).

4.1 Focus

The general focus of this chapter is on extending the listener-based approach described

in Chapters 2 and 3 in two ways, in order to demonstrate its applicability to language

change more generally. Firstly, I extend the application of the approach from sound

change, where the linguistic elements in question are continuous (i.e. embedded within

a continuous acoustic space), to other kinds of language change that involve the

addition, removal, or substitution of a discrete linguistic element, such as lexical

adoption. Secondly, I extend the perceptual biases that underpin the approach from

language-internal factors, such as word frequency, to language-external factors, such

as social information and attitudes. Since all levels of linguistic structure above the

phonetic signal are discrete, and since (almost) all language use involves interaction in

a social environment, this extension aims to make the listener-based approach much
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more widely applicable, in a way that doesn’t betray its strong basis in empirically-

demonstrable perceptual biases (see Section 4.2 for further discussion).

At first glance, this extension seems to take the model in a completely different

direction; however, much of the conceptual framework carries over from the study of

sound change (Chapter 2) and word frequency effects (Chapter 3), underscoring the

potential of a listener-based approach to explain vastly different elements of language

change through a single, unified system. For example, variationist sociolinguistics has

long associated variation in the use of discrete linguistic elements with probabilistic

constraints or variable rules (Cedergren & Sankoff, 1974; Labov, 1969). Variable rules

allow the use of a particular linguistic element in conveying a particular (social and/or

linguistic) meaning to be thought of as the outcome of sampling from a repertoire

of elements associated with that meaning (Benor, 2010; Gumperz, 1964), just as

the phonetic realization of a phoneme in a particular instance of a word may be

thought of as the outcome of sampling from an acoustic distribution. Moreover,

variable rules are partly determined by social and stylistic factors, which implies

that the linguistic elements to which they refer can be considered to be embedded

within a continuous social space, grouped by their meanings, much like the phonetic

realizations in Chapter 2 are embedded within a continuous acoustic space, grouped

by their phoneme representations. Similarly, a host of experimental studies have

found that social information and attitudes affect speech perception in very similar

ways to things like word frequency (see Section 4.2.2). Thus, social information and

attitudes induce perceptual biases, and these biases plausibly operate in similar ways

to those already established in Chapter 3.

To demonstrate the viability of the listener-based approach in the realm of social

effects on change in the use of discrete linguistic elements, I focus on the word eh

(/Ei/) in New Zealand. Eh is a discourse tag particle, typically present only in spo-

ken language; for this reason, I continue to focus on biases induced through speech
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perception, as in Chapter 3. I focus on eh for both empirical and theoretical rea-

sons evoked by previous work (see Section 4.4.1 for in-depth discussion). Empirically,

previous work has shown that eh was historically used predominantly by Māori, the

indigenous people of New Zealand, but is now also used by young Pākehā, the descen-

dants of European settlers. Importantly, however, there remains a strong association

between eh and stereotypes of Māori speech. Theoretically, the use of eh by young

Pākehā has been interpreted as consistent with two different hypotheses. The change-

in-progress hypothesis claims that eh is being adopted by all Pākehā, from below the

level of consciousness. The age-grading hypothesis claims that eh is being adopted

only by young Pākehā, as a ‘young’ way of expressing alignment with an interlocutor.

Among these two hypotheses, the change-in-progress hypothesis is most consonant

with a listener-based approach to language change, as restricting the adoption of

eh to young Pākehā in the age-grading hypothesis may require appealing to explicit

awareness and intentions of the speaker.

Under a listener-based approach, the hypothesis that eh has spread from Māori

to all Pākehā in recent years has a principled underpinning that does not require

any assumptions about Pākehā intention. Recent years have seen notable improve-

ments in the social attitudes of Pākehā toward Māori (see Section 4.4.2). Results in

speech perception have shown that social attitudes induce perceptual biases, altering

the influence that experiences have on linguistic representations (Section 4.2.2). A

listener-based approach predicts that improvements in attitudes toward Māori cause

Māori instances of eh to have greater influence on the representations that Pākehā

draw upon as part of their own linguistic repertoire, thereby increasing the number
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of Pākehā that have eh in their repertoire (see Section 4.3).32 To test this pre-

diction, I study the use of eh by Pākehā in the large, diachronic ONZE Corpus

(Gordon, Maclagan, & Hay, 2007). The quantitative results confirm that Pākehā

have increasingly added eh to their linguistic repertoire over time, consistent with

the change-in-progress hypothesis, and qualitative investigation of historical meta-

linguistic commentaries highlights the role of social attitudes in this change. I argue

that the adoption of eh by Pākehā was initially blocked by social stigma for Māori,

and was only allowed due to recent destigmatization and a shift toward an inclusive

attitude that views New Zealand as a bicultural fusion.

What makes eh so interesting is that its perceptual-ideological association with

Māori has remained even though some Pākehā now use it. The same may not be true

of other cases where one social group adopts a lexical item from another; for example,

though cool was adopted into American English from African American English, it

has since been adopted into English more generally (e.g. Reyes, 2005), and its free

use by (young) English speakers of various ethnicities all over the world implies that

it no longer necessarily carries strong associations with African Americans. It is the

maintenance of strong associations between eh and Māori, against a backdrop of

changing Pākehā attitudes toward Māori, that makes eh a particularly appropriate

case study for a listener-based approach (see Section 4.3), and one that can illustrate

how changes in attitude facilitate changes in language.

32Other, speaker-based approaches may share the prediction that Pākehā adopt eh as attitudes
improve, as a way of signaling an affiliation with Māori. While such signaling behavior can and does
happen, it arguably requires an intention that is unlikely to be explicit in every produced instance
of eh. As in previous chapters, I focus on the listener-based approach here for reasons of parsimony,
as it is relatively more likely that implicit attitude-related perceptual biases are activated with every
perceived instance of eh.
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4.2 Social effects

A great deal of work in the field of sociolinguistics has shown that variation in lan-

guage use is socially structured. It is therefore no surprise that language change is

shaped by social factors and attitudes, just as it is shaped by language-internal fac-

tors such as word frequency. And it is also no surprise that listeners are sensitive

to social information conveyed through speech, which induces perceptual biases just

like language-internal factors. A listener-based approach connects these otherwise

independent observations to each other and to language-internal factors, leveraging

socially-based perceptual biases to offer a parsimonious explanation of why social

effects in language change exist and how they operate.

In this section, I describe insights gained from empirical studies of social effects

in language change and in speech perception. I cast a wide net to establish the

parallels between social effects and the effects of word frequency discussed in Chapter

3, thereby illustrating the potential for the application of a listener-based approach.

4.2.1 Social effects in language change

A vast literature has demonstrated that language change progresses in a socially-

structured manner, with implications for variation in how different people use the

same language at any given time (e.g. Labov, 2001, and references therein). Here, I

focus on four high-level insights from this literature that are relevant to the present

investigation of the role of social attitudes in Pākehā eh-adoption: methods for infer-

ring change-in-progress from synchronic linguistic variation; the nature of evidence

that can support such inferences; the mechanism by which language change is under-

stood to spread throughout a population; and the way that this spread of language

change is mediated by social attitudes.

The first insight to be gained from the study of social effects in language change
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concerns how change-in-progress can be inferred on the basis of synchronic linguistic

variation. The apparent time construct holds that differential degrees of use of a par-

ticular linguistic feature according to age is a possible indicator of change-in-progress

(Labov, 1963). This indication follows from the assumption that, even though speak-

ers may change their linguistic system throughout the lifespan (cf. Harrington, 2006;

Harrington et al., 2000; Sankoff & Blondeau, 2007), they exhibit less flexibility in do-

ing so as adults than they do as children (Baxter & Croft, 2016). In most of the cases

that have been explicitly tested, the changes inferred through apparent time analysis

– i.e. by comparing multiple age-groups a single point in time – have been confirmed

through real time analysis – i.e. by comparing a single age-cohort at multiple points

in time (Cukor-Avila & Bailey, 2013). Nevertheless, since it remains possible that

age-based patterns are stable over time (a situation known as age-grading), the ap-

parent time construct is not diagnostic of change-in-progress; it is ideally supported

by other forms of evidence.

The second insight concerns the nature of these other forms of evidence that can

be used to support the claim of change-in-progress. Just as sound change affects

some words faster than others (Chapter 3), language change is often observed to

be more advanced among some social groups than others. That is, certain social

groups are leaders of certain changes. Additional evidence for a particular claim of

language change-in-progress is therefore provided by consistency between the identity

of the leaders of the (apparent) change and the assumed social mechanisms supporting

the change. For example, Labov (1972) found that the leaders of /r/-rhoticization

in New York City were members (or aspiring members) of the upper middle class,

consistent with the assumption that /r/-rhoticization was motivated by concerns of

prestige. Similarly, Eckert (1988) found that the backing and lowering of /2/ spread

differentially through locally-defined social groups in a Detroit-area high school. It

was more advanced among Burnouts (rebellious, working-class, oriented toward the
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metropolitan urban environment) than among Jocks (clean-cut, middle-class, oriented

toward the local suburban environment), consistent both with the wider patterns of

the change and with local ideologies toward it as part of the Northern Cities Shift.

The third insight concerns how language change spreads from the innovators or

leaders of the change through an entire community or population. Since adults remain

participants in language change throughout the lifetime (Harrington, 2006; Harring-

ton et al., 2000; Sankoff & Blondeau, 2007), and since language change is often socially

structured (e.g. Eckert, 1988; Labov, 1972, 2001; Weinreich et al., 1968), it is little

surprise that the social network structure of adult linguistic interaction plays an im-

portant role in the spread of language change (e.g. Milroy & Milroy, 1985). Within a

social network, one of the primary determinants of the spread of linguistic change is

frequency of interaction (Labov’s (2001) principle of density) – who talks to whom,

and how often. This statement captures Bloomfield’s (1933, p. 326) insight that “ev-

ery speaker is constantly adapting his speech-habits to those of his interlocutors”; an

innovative variant will spread easily to a speaker for whom a large proportion of in-

teractions are with interlocutors who use that variant.33 Crucially, change is assumed

to spread in this way automatically, without intention or even awareness on the part

of the speaker (Trudgill, 2008).

The fourth and final insight concerns the mediation of the spread of language

change by social attitudes. The spread of language change is sometimes assumed to

be ‘social’ only to the extent that it is governed by social networks, through frequency

of interaction (Labov, 2001; Trudgill, 2008). However, this assumption is rejected by

approaches that foreground the role of social meaning-making in linguistic variation

and change (e.g. Eckert, 2012, and references therein). It has also been shown to be

33The reverse implication is also true: an innovative variant will be inhibited from spreading to
a speaker for whom a large proportion of interactions are with interlocutors who do not use that
variant. In this way, a social network can serve to enforce pre-existing norms, in the resistance of a
change-in-progress.
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insufficient to account for the formulation of New Zealand English, for which simula-

tions have demonstrated that frequency of interaction alone generates rates of change

that are slower than those observed empirically (Baxter, Blythe, Croft, & McKane,

2009). Just as the generation of empirically-attested word frequency effects on rates of

sound change require the assumption of asymmetric treatment of words (Chapter 3),

Baxter et al. (2009) demonstrate that the generation of empirically-attested rates of

change across speakers requires the assumption of asymmetric treatment of speakers.

A natural source of such asymmetric treatment is provided by social attitudes, i.e. by

how someone feels about their place in a social group and about other social groups,

which have been shown to be crucial to some instances of language change. For

example, Labov (1963) shows that various features of the Martha’s Vineyard accent

were retained by those who felt positively about the island community and negatively

about the mainland community (as represented by tourists), but lost by those who

felt the opposite. Similarly, Maegaard, Jensen, Kristiansen, and Jørgensen (2013)

show that the spread from Copenhagen of two changes in regional varieties of Dutch

was associated with speakers’ positive subconscious attitudes toward Copenhagen,

and Stausland Johnsen (2015) shows that the spread of features from the upper-class

dialect in Oslo to local dialects in South-East Norway is blocked by strong negative at-

titudes. Thus, social attitudes constitute one of the many forces involved in language

change (cf. Chapter 2). Furthermore, since attitudes of individuals and groups are

dynamic, the relationship between language and attitudes is bidirectional: changes

in either one may trigger changes in the other (e.g. Coupland, 2014; Zhang, 2018).

The insights gained from the study of social effects in language change establish

the potential for a listener-based approach, in parallel with the approach to word

frequency effects demonstrated in Chapter 3. In the following section, I draw on

results concerning social effects in speech perception to further establish this potential,

which I apply to puzzles in language change in Section 4.3. The insights described here
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also establish some practical means through which language change-in-progress can be

assessed synchronically, in connection with socially-structured linguistic variation and

social attitudes. In Sections 4.5–4.6, I draw on these insights to test the hypothesis

that Pākehā have increasingly adopted eh over time, in association with changes in

attitudes toward Māori.

4.2.2 Social effects in speech perception

When perceiving spoken language, listeners cannot help but infer social information

about the speaker alongside information about the linguistic units (phonemes, words,

etc.) they are using (Sumner et al., 2014). Listeners are highly adept at drawing such

social inferences; though they are often supported by visual and situational context,

experimental results have shown that they are also drawn in the absence of context,

even with severely impoverished signals. For example, Szakay (2012) used low-pass

filtered speech to show that New Zealand listeners are able to tell whether a speaker

is Māori or Pākehā just from low-level cues such as rhythm and intonation.

The social information that listeners infer plays a crucial role in inducing per-

ceptual biases. The literature has empirically established numerous cases of these

socially-induced perceptual biases, which fall into two main kinds. The first kind

of socially-induced perceptual bias, which I will call expectation bias, uses the social

information inferred about the speaker to adjust the listener’s expectations. Expec-

tation bias draws on the listener’s experiences with others who are socially similar to

the speaker and typically serves to facilitate in-the-moment communication, in the

same way as biases based on lexical status and frequency (Chapter 3). The second

kind of socially-induced perceptual bias, which I will call evaluative bias, uses the

inferred social information to evaluate the speaker relative to the listener. Evaluative

bias influences the way the listener categorizes and treats the speaker on a longer-

term basis, both in terms of their actions in the world and in terms of influences on



CHAPTER 4. SOCIAL ATTITUDES IN LEXICAL ADOPTION 111

their linguistic representations.

One of the most common demonstrations of expectation bias involves listeners

shifting the perceptual boundary between different phonemes. For example, Strand

and Johnson (1996) showed that listeners retract the perceptual boundary between

/s/ and /S/ in nonwords when shown a picture of a male face relative to when shown

a female face, consistent with the fact that experiences of male speech tend to contain

more retracted /s/ than experiences of female speech. This result is parallel to results

showing that listeners will adjust their perception of an acoustically ambiguous phone

so as to hear a signal as a real word rather than a nonword (Ganong, 1980). Similarly,

Hay et al. (2006) showed that New Zealand listeners perceive tokens of the recently-

merged near (/i@/) and square (/E@/) vowels more distinctly when looking at a

photo of an old or middle-class-looking person than when looking at a photo of a

young or working-class-looking person, exploiting the fact that listeners are more

likely to have experienced the distinction from older and/or higher-class speakers.

This result is parallel to results showing that listeners are biased to perceive a signal

that is acoustically ambiguous between two words (like best and pest) as the higher-

frequency word (Connine et al., 1993; de Marneffe et al., 2011).

Expectation bias also extends beyond adjustments of a single phoneme boundary.

For example, McGowan (2015) showed that listeners can transcribe Chinese-accented

speech in noise more accurately when shown a photo of an Asian person than when

shown a photo of a White person, parallel to results showing that listeners favor high-

frequency words as interpretations of degraded signals (Howes, 1957; Savin, 1963) or

of speech from a dialect other than their own (Clopper et al., 2010). As well as making

speech perception more robust to confusion, expectation bias can make it faster. For

example, Staum Casasanto (2008) showed that Californian listeners are faster to

identify a token such as [mæs] as having a deleted t/d (corresponding in this case

to mast) when shown a photo of a Black man than when shown a photo of a White



CHAPTER 4. SOCIAL ATTITUDES IN LEXICAL ADOPTION 112

man, consistent with the higher rate of t/d -deletion in African American Vernacular

English than in General American English. This result is parallel to results showing

that listeners classify high-frequency words as real words faster than low-frequency

words (Forster & Chambers, 1973).

The studies described above use visual cues to generate expectation bias, but

expectation bias does not only come from vision. For example, it is possible to induce

expectation bias by explicitly telling the listener about the speaker (Niedzielski, 1999),

or even by situationally evoking social information (Hay & Drager, 2010; Hay, Nolan,

& Drager, 2006). Expectation bias can also emerge from cues intrinsic to the speech

signal itself (e.g. Szakay, Babel, & King, 2016). Thus, expectation bias is extremely

powerful and highly prevalent; strong biases are induced in listeners very readily.

Evaluative bias is induced in listeners just as readily as expectation bias, some-

times from extremely small features of the linguistic signal. For example, Campbell-

Kibler (2007) found that speakers are perceived as country-oriented and unintelligent

when using the alveolar variant -in of (ing) (e.g. walkin’ for walking) and as city-

oriented and less masculine when using the velar variant -ing. In this way, evaluative

bias is a means through which listeners build a comprehensive social image of the

speaker, evaluating them in a much more nuanced fashion than is permitted by in-

ferred sociodemographic information.

In mediating the construction of a social image of a speaker, evaluative bias often

evokes an attitude toward the speaker in the listener. In this way, evaluative bias can

affect the process through which a listener decides which action to take in response

to the speaker. For example, Purnell, Idsardi, and Baugh (1999) found that the

exact same speaker was less successful in telephone applications for housing when

using African American Vernacular English or Chicano English than when using

General American English. That is, listeners inferred the speaker’s ethnicity, and

inferences of non-white ethnicity evoked social attitudes that biased them (consciously
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or unconsciously) toward deciding not to rent to him.

Evaluative biases also affect linguistic decision-making, as can be seen through the

mediation of phonetic accommodation by attitudes, both implicit and explicit. A host

of research under the umbrella of Communication Accommodation Theory (Giles,

Coupland, & Coupland, 1991) has shown that listeners are more likely to imitate

phonetic features of speakers they feel positively inclined toward than speakers they

feel negatively inclined toward. For example, Babel (2010) recorded New Zealanders’

speech before and after listening to an Australian speaker, and found that those with

implicit pro-Australian attitudes adjusted their vowel pronunciations in the direction

of the Australian speaker more than those with implicit anti-Australian attitudes.

Similarly, Yu, Abrego-Collier, and Sonderegger (2013) recorded subjects before and

after listening to a story containing artificially-lengthened voice onset time (VOT)

of voiceless stops, and found that those with explicit positive attitudes toward the

narrator lengthened their own VOT the most. Interestingly, not only did attitude

predict the degree of VOT-imitation, but it was also the strongest subject-based

factor to do so, indicating the immense power of evaluative biases.

The effect of evaluative bias on linguistic decision-making is mostly assumed to

be unconscious (Giles et al., 1991), through the mediation of the activation and/or

updating of linguistic representations. However, it is possible that listeners could

be consciously choosing to imitate phonetic features of speakers they feel positively

inclined toward. To demonstrate that evaluative bias affects linguistic representations,

it is necessary to consider its effects on perceptual tasks.

In perceptual tasks, negative attitudes yield evaluative bias through inciting per-

ceptual othering. This evaluative bias mediates the process by which a token activates

existing linguistic representations. For example, Nguyen, Shaw, Tyler, Pinkus, and

Best (2015) found that (non-Asian) listeners with negative attitudes toward Asians

are worse at categorizing Vietnamese English-accented vowels than listeners with
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positive attitudes toward Asians. The evaluative bias also mediates the process by

which a token is stored in memory and thus updates existing linguistic representa-

tions. For example, Sumner and Kataoka (2013) found across semantic priming and

false-memory tasks that General American English listeners have weaker encoding in

memory of words spoken by a New York City English speaker (NYC) than of words

spoken by a General American English (GA) or British English (BE) speaker. These

results arguably reflect evaluative biases, since similar listeners generally have more

negative attitudes toward NYC (as a low-prestige accent) than they do toward GA

and BE. In general, the perceptual othering incited through negative attitudes can

weaken both the resonance of a new linguistic experience with existing representations

and the influence that such an experience has in updating those representations.

Evaluative bias can also come from perceptual othering without explicitly going

through the route of attitudes, based on the extent to which a listener perceives

the speaker to be similar to themselves. Bestelmeyer, Belin, and Ladd (2015) present

fMRI evidence that the perception of similarity underlying evaluative bias is based on

social relevance rather than on (asocial) familiarity. Thus, listeners compare the social

information they infer about speakers to their own social identity, which generates

negative evaluative bias in the case of a mismatch. The effect of this bias can be

observed in both phonetic accommodation and in perceptual tasks.

Listeners appear to phonetically accommodate more with speakers that they sound

similar to than with speakers that they sound different from (in a socially relevant

way). For example, Kim, Horton, and Bradlow (2011) showed that American English

and Korean listeners accommodate more with speakers of the same regional dialect

of their language than with speakers of a different dialect or a different language.

Similarly, there are indications that listeners accommodate more with speakers of the

same sex than with members of the opposite sex (Babel, 2012; Babel & Bulatov, 2012;

Babel, McAuliffe, & Haber, 2013), though such indications are not always present and
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are rarely explicitly tested (Pardo, Urmanche, Wilman, & Wiener, 2017).

Listeners also appear to encode spoken utterances in memory better – i.e. with

greater strength or fidelity – if they come from a speaker that they sound similar

to. For example, Sumner and Samuel (2009) found that listeners who grew up in the

New York City area and speak non-rhotic NYC English exhibit long-term repetition

priming of non-rhotic variants from a NYC speaker, but listeners who grew up in the

area and speak a rhotic (non-NYC) variety do not. Similarly, Perrachione, Chiao, and

Wong (2010) found that Black listeners were better at individuating and remembering

the names of speakers who were perceived as sounding Black than they were at

individuating and remembering the names of speakers who were perceived as sounding

White, and vice versa for White listeners.

The literature reviewed in this section has made it clear that social information

and attitudes play a large role in speech perception, and, by extension, in language

perception more generally. Listeners are adept at inferring social information about

speakers, and this information is readily used by the perceptual system. The resultant

perceptual biases create asymmetries in the way that listeners represent and respond

to language. In Section 4.3, I show how these perceptual biases give rise to socially-

based asymmetries in language change under a listener-based approach.

4.3 A listener-based approach

As discussed in Section 4.2.1, language change often displays social effects. A listener-

based approach predicts that such social effects on language change may be explained
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by socially-based asymmetries in the way that listeners experience, perceive and re-

spond to language. In this section, I sketch34 some of the ways in which a listener-

based approach accounts for social effects on language change. In keeping with the

broader focus of this chapter, I show how the listener-based approach addresses three

general puzzles that arise in consideration of social effects on language change: the

maintenance of leaders of change; the progression of change in spite of increasing

variation; and the influence of social attitudes on change. Then, in keeping with

the empirical focus of this chapter, I develop the account of the influence of social

attitudes with respect to interethnic lexical adoption of eh in New Zealand.

In many language changes, one social group may lead all others in experiencing

the change, for all times while the change is in progress. The basis of a listener-based

approach in the listener’s experience provides a possible explanation for why such

leaders are maintained once a change begins, instead of the rest of the population

catching up and experiencing the change in parallel. If the use of a linguistic feature

is changing, with the change most advanced among members of a particular group,

then not only will members of that group use the feature more than others as speak-

ers, but they will also experience the feature more as listeners, since within-group

interaction is more common than cross-group interaction. For example, the merger

between the near (/i@/) and square (/E@/) vowels in New Zealand English was led

by working-class speakers, meaning that working-class listeners heard near-merged

or fully-merged tokens more often than middle-class listeners simply because they

interacted with working-class speakers more (see discussion in Hay et al., 2006). In

this situation, though middle-class speaker-listeners did begin to merge as the merger

became more prevalent, they did not have the chance to catch up in the merger be-

cause they were not exposed to merged speech as often as working-class listeners.

34I leave aside the formalization of any of these accounts in the modeling framework presented
in Chapter 2, but note that a route for extending the model to incorporate social information is
provided by Johnson (2006).
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A listener-based approach explains the maintenance of leaders of change as a sim-

ple consequence of the fact that linguistic knowledge is built from experience, which

varies across social groups.

The fact that different social groups may experience language change at differ-

ent times or rates implies that linguistic variation may increase during intermediate

periods of change. Conceivably, this increase could create problems for communi-

cation; in cases like the near–square merger, listeners who maintain a distinction

between the vowels may not readily be able to understand speakers who do not. In the

extreme, a communicative breakdown of this sort could lead different groups of speak-

ers to dissociate, so that the change never progresses through the entire community.

However, increasing variation with change typically does not create communicative

breakdowns, and a listener-based approach can explain why not. Just like percep-

tual biases based on lexical frequency make it possible for listeners to understand

acoustically ambiguous words (Chapter 3), socially-induced expectation biases make

it possible for listeners to understand – and thus store in memory and eventually re-

produce – the speech of those from other social groups (Section 4.2.2). For example,

though at one point middle-class speakers of New Zealand English were unlikely to

merge near and square, they could use various cues to infer that a merged speaker

was working-class, and then alter their perception to make sense of merged tokens.

Over time, their stored experiences with merged tokens would grow, making them in-

creasingly likely to produce merged tokens themselves and thus follow in the change.

In this way, a listener-based approach recruits socially-based expectation biases to

ensure that changes progress in spite of increasing variation.

Of course, listeners do not simply imitate all they hear. Sometimes, a listener may

consciously choose not to imitate a linguistic feature from a different social group,

because of a negative attitude toward members of that group. In this way, social

attitudes can bias the decisions underlying linguistic action, just as they can bias
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the decisions underlying non-linguistic action (Purnell et al., 1999). But the use of

linguistic features is often unconscious, and thus the imitation of linguistic features

is presumably also often unconscious. Even in these unconscious cases, imitation is

affected by social attitudes, through evaluative biases (Giles et al., 1991, and other

research under the umbrella of Communication Accommodation Theory). Since a

listener-based approach assumes that language changes through a chain of listeners

(approximately) imitating speakers, the fact that imitation is mediated by social

attitudes leads to the prediction that language change is also mediated by social

attitudes.

In general, a listener-based approach predicts that the spread of a linguistic feature

from one social group to another will be facilitated if the adopting social group hold

positive attitudes toward the other group and inhibited if they hold negative attitudes

(at least as long as the feature maintains a perceived association with the other group).

Crucially, since a listener-based approach holds that the spread of a feature draws

upon evaluative bias in the listener, it does not require speakers to actively try to

imitate or avoid the feature, just as perceptual biases based on lexical frequency can

cause high- and low-frequency words to change at different rates without requiring

speakers to try to speak clearly (Chapter 3).

When social attitudes change over time, as do Pākehā attitudes toward Māori,

the corresponding change in evaluative bias is predicted to cause changes in language

use. In the framework of the model described in Chapter 2, changes in evaluative

bias can be understood as akin to changes in typicality threshold.

For concrete illustration, consider Figure 4.1, in which there is a category-level

representation corresponding to discourse tags, containing type-level representations35

35As in the model from Chapter 2, types within a category remain functionally distinct; thus,
while eh and you know are used similarly, and access similar representations, they need not be
considered alternants in direct competition with one another.
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Figure 4.1: Illustration of a listener-based approach to eh-adoption. Tokens of the types corre-
sponding to eh (E) and you know (Y) are located in a socio-perceptual space. Each token carries
information about whether the speaker who produced it was (perceived as) Pākehā (red) or Māori
(blue). For Pākehā with a strong negative attitude toward Māori, the high typicality threshold
causes the boundaries of the discourse tag category representation (solid green ellipse) to exclude
all tokens of eh as atypical. Consequently, experienced tokens of eh are blocked from affecting pro-
duction. As attitudes improve and become more inclusive, the typicality threshold lowers and the
boundaries expand along the ethnicity dimension (dashed green ellipse), allowing some tokens of eh
to be perceived as typical (black arrow). When the first token of eh is perceived as typical, the
exemplar that it deposits in the space becomes part of the representation that the Pākehā speaker
draws upon for production, thereby adding eh to their linguistic repertoire. It may also trigger a
knock-on effect, expanding the boundaries of typicality even further to include more tokens of eh
and thereby solidify its place in the repertoire.

for different tags such as eh and you know.36 The exemplars for these types are

located within a space partly defined by social factors; for concreteness, assume that

one dimension corresponds to the perceived ethnicity of the speaker. At an early

point in time, tokens of eh are almost exclusively concentrated toward the Māori

end of the ethnicity dimension, while tokens of you know are spread all along the

dimension, across both ethnicities. The category-level discourse tag representation

that a Pākehā speaker draws upon for production is centered over the Pākehā end

of the dimension and thus excludes eh. Pākehā can recognize eh as belonging to the

category, but perceive it as atypical because of its association with Māori.

36Acknowledging the fact that listeners may adopt a type from another group necessitates a
further extension of the model from Chapter 2, whereby type frequencies can change over time.
Since I am not focused on constructing a model of eh-adoption in this chapter, I assume such an
extension without developing the details of how it might work.
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In this situation, strong negative attitudes will behave like a high typicality thresh-

old, making it highly unlikely that tokens of eh will be stored in the category-level

discourse tag representation. Effectively, a negative attitude increases the distance

between the Māori speaker’s token and the Pākehā listener’s representation, giving

the former little influence in updating the latter. However, as attitudes become more

positive, losing stigma and shifting toward a sense of bicultural fusion, Māori will

be perceived as less distant from Pākehā. Correspondingly, the typicality threshold

will lower and atypical instances of eh from Māori will begin to be stored in the

representation that the Pākehā listener draws upon for their own production.

Once the perceptual barrier of the negative attitude has been removed and the

Pākehā listener has added weak traces of eh to their representation, successive in-

stances of eh will have more influence, as they have a foothold that further increases

their typicality. Thus, an individual is expected to reach full fluency with eh quickly

after adopting it, meaning that the change will be more strongly reflected in who uses

eh rather than in how often they use it. In fact, given that the discourse licensing

of eh is tied to interpersonal and situational factors (see Section 4.4.1), its quantity

of use by an individual is expected to be highly variable, and thus may not strongly

reflect any patterns of change. While distinguishing who and how often would be

prudent for any analysis of language change, the parallel distinction between inter-

actions with representations in perception and production offered by a listener-based

approach gives this distinction new salience, as it motivates different predictions for

each question.

As demonstrated in this section, a listener-based approach provides solutions to

puzzles that emerge from considering social effects on language change. One of the

core advantages of a listener-based approach is that it predicts that effects of social

information and attitudes ought to be the default in language change. Listeners ex-

perience language in a social environment and readily infer social information and
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evoke social attitudes in this environment, which give rise to expectation and eval-

uative biases. These perceptual biases affect listeners’ productions and perceptions

without the need for effort or even conscious awareness on their part, enabling and

maintaining social effects on language change over time.

4.4 Eh in New Zealand

The first part of this chapter has established that a listener-based approach predicts

social attitudes to play a role in language change. In the second part of the chapter,

I zoom in to focus on a specific case of this prediction, concerning the use of eh by

Pākehā in New Zealand. In this section, I fill in the gaps that I have left in earlier

discussion of this case, about past studies of eh, their conclusions, and changes in the

attitudinal situation in New Zealand. In doing so, I lay the groundwork for a corpus-

based study that tests whether Pākehā have increasingly adopted eh over time, as

expected from the improvement of social attitudes under a listener-based approach.

4.4.1 Background

Eh is a tag particle, meaning it is constrained syntactically to be used at the end of a

clause, but has no semantic constraints and adds no at-issue semantic content to the

proposition expressed in that clause. Rather, it adds pragmatic content, acting as

a positive politeness marker (Brown & Levinson, 1987). Its functions are numerous

and nuanced, but it most commonly functions to establish or signal common ground

and to facilitate the listener’s continued involvement in a narrative (Meyerhoff, 1992),

and it is most commonly used in evaluative contexts, such as after an opinion or in

emphatic situations (Columbus, 2010). In this way, eh often emphasizes a speaker’s

values, beliefs, and opinions in a way that invites or expects the listener to share

them. For example, its use in the utterance “I couldn’t imagine living anywhere else
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eh” (excerpt from ONZE) serves to help the speaker convey her appreciation of her

home and reflect her belief that everyone should appreciate his or her own home in

this way. Since eh promotes alignment of interlocutors with respect to values, beliefs,

and opinions, it is argued to be used most often when such alignment is a priori most

likely, in cases where the perceived “likeness” of the interlocutors is high (Meyerhoff,

1994).

In popular perception, eh appears to be more strongly associated with the indige-

nous Māori than it is with White Pākehā, leading Meyerhoff (1994, p. 375) to label it

an “in-group marker for Māori speakers of New Zealand English”. However, in spite

of this strong association with Māori, eh is commonly used by young speakers of both

ethnicities. For example, O’Flaherty (2015) claims in The Guardian that it is “tacked

on to the end of every spoken sentence”, and Meyerhoff (1994, p. 367) writes that

“few features of New Zealand English are more eagerly recognized by New Zealanders

as a marker of their identity” than it. These observations raise the question: if eh is

strongly associated with Māori – who, historically, have been socially stigmatized –

then why do young Pākehā use it?

Two hypotheses for the use of eh among young Pākehā have been put forth in

the literature: age-grading and change-in-progress. The age-grading hypothesis, sug-

gested by Meyerhoff (1994), holds that young Pākehā use eh simply because they are

young. Age-grading could be reflective of properties of the community – with Pākehā

actively suppressing the use of eh as they age – or of the data sample – with young

Pākehā using eh to emphasize the values, beliefs, and opinions they share with young

interviewers by virtue of their closeness in age. The change-in-progress hypothesis,

defended by Stubbe and Holmes (1995), holds that young Pākehā use eh because they

are leading a change across all Pākehā, in which they adopt eh from Māori. Because

both hypotheses predict the same effects of age on Pākehā eh-usage, the literature

adduces quantitative arguments for one hypothesis over the other by considering how



CHAPTER 4. SOCIAL ATTITUDES IN LEXICAL ADOPTION 123

Pākehā eh-usage differs according to factors other than age.

Meyerhoff (1994) considers how patterns of eh-usage among Pākehā relate to

patterns of eh-usage among Māori. Her data are taken from sociolinguistic interviews

with working-class New Zealanders living in Porirua City between 1989 and 1990,

where the interviewer matched the interviewee in terms of ethnicity and sex, but not

age. Overall, she finds that Māori use eh more than Pākehā on average, consistent

with the change-in-progress hypothesis. However, she also finds that Māori as well as

Pākehā exhibit less eh-usage by old speakers than by young speakers, consistent with

the age-grading hypothesis. Furthermore, she finds a reversal of sex-based patterns

across ethnic groups: Māori men use eh more than Māori women, but Pākehā men

use eh less than Pākehā women. She argues that this reversal at least complicates the

change-in-progress hypothesis, since it shows that eh is not spreading even-handedly

from Māori to Pākehā. Observing that the most prolific young female Pākehā eh-

users lived with or were married to Māori (or Pacific Island) men, she suggests that

the uptake of eh by Pākehā may be influenced by degree of exposure to, or sense

of affiliation with, Māori. Finally, among young female speakers, she also finds a

reversal of the predominant ethnicity-based pattern: though Māori in general use eh

more than Pākehā in general, young Māori women use it less than young Pākehā

women. She argues that this reversal doesn’t make sense under the basic change-

in-progress hypothesis, because Pākehā would not be expected to overtake Māori

in light of the strong popular associations between eh and ethnicity, and because

there is no principled reason why such overtaking should be conditioned on sex.

Given this argument, she suggests that there is little evidence for interpreting age-

based differences in eh-usage among Pākehā as supporting the change-in-progress

hypothesis over the age-grading hypothesis. However, she notes that her results may

be affected by the inclusion of speakers who use eh to an extreme degree and thus are

not representative of the general population. Representativeness is a more general
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issue of Meyerhoff’s (1994) study, as it is based on relatively few speakers (5 per age

× ethnicity × sex cell).

Stubbe and Holmes (1995) investigate how eh-usage by Pākehā differs according

to the interaction of age with class and sex. Their data are taken from conversa-

tions between friends (matched for age, sex, and class) living in Wellington City (the

main metropolitan center of which Porirua City is a constituent) between 1988 and

1994. They find that young speakers use eh more than middle-aged speakers, and

since their speakers are all talking to a friend of the same age, they argue that this

pattern contradicts the age-grading hypothesis and supports the change-in-progress

hypothesis. They adduce further support for the change-in-progress hypothesis from

the fact that eh is used more by working-class speakers than by middle-class speak-

ers, and, among working-class speakers, more by men than by women. This pattern

echoes that of other well-studied discourse variables in New Zealand English which

are widely accepted to be undergoing change from below among Pākehā, whereby

they are increasingly being used subconsciously to build solidarity. Because the use

of eh is subconscious, it can occur in spite of any negative association with Māori. Fi-

nally, they note that young working-class men use eh approximately ten times more

often than young working-class women, which stands in strong opposition to the

effects identified by Meyerhoff (1994) that presented complications for the change-in-

progress hypothesis. Free of these complications, they argue that there are no barriers

to rejecting the age-grading hypothesis in favor of the change-in-progress hypothe-

sis. Stubbe and Holmes (1995) employ statistical testing to support their results,

but may still be influenced by issues of representativeness, as their data also include

relatively few speakers (6 per age × class × sex cell, with young speakers only among

the working class).
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4.4.2 Reasons for change: attitudes

In her argument for why high eh-usage among young Pākehā may not reflect change-

in-progress, Meyerhoff (1994, p. 375) makes the point that use of eh is likely to evoke

associations with Māori, with negative consequences:

We would not expect [young Pākehā women] to accommodate to the

speech norms of Māori men when talking to another young Pākehā woman.

Identifying oneself with Māori speakers of English outside the Māori com-

munity is not without cost for Pākehās [sic]. Instead of being associated

with the ethnic group which (in the wider NZ community) has most power

and status, it associates the speaker with an out-of-power and less status-

ful social group.

If the change-in-progress hypothesis is correct, then it must answer the question of

why Pākehā would adopt a feature from a stigmatized group. In other words, what

triggered the change? A listener-based approach suggests that the answer may lie in

changes in Pākehā attitudes toward Māori.

There is good independent evidence to show both that Māori have historically

been treated as inferior in New Zealand and that that treatment has recently begun

improving. The Treaty of Waitangi, the document which brokered the colonization

of New Zealand in 1840 in exchange for protection of Māori people and assets, was

flagrantly abused shortly after being signed, with Pākehā confiscating Māori land

through war. Pākehā held linguistic biases against both the Māori language and Māori

features of English. For example, children were routinely disciplined for speaking Te

Reo Māori at school, and controversy arose when telephone operator Naida Glavish

was nearly fired in 1984 for answering the toll switchboard with the Māori greeting kia

ora (Boshier, 2015). In recent years, however, Māori have become more respected and

accepted by the New Zealand government, which has reached major settlements with
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tribes over injustices under the Treaty, established devoted Māori seats in parliament,

and launched a series of initiatives to revitalize Māori culture and language. For

example, the Māori Language Act of 1987 gave Te Reo Māori official and protected

status in New Zealand. Follow-up initiatives have seen the entrance of Te Reo Māori in

the public school curriculum as something of which “all students have the opportunity

to acquire knowledge” (Ministry of Education, 2007, p. 9), as well as the adoption of

Māori greetings and vocabulary on all news broadcasts on public television. These

recent actions establish direct contrasts with earlier discriminatory behaviors.

The shift in treatment of Māori is not just behavioral, at the institutional level,

but also attitudinal, at the individual level. Pākehā now seem to value the place

of Māori in New Zealand society; for example, Holmes (2009) reports studies from

the early 1990s showing that most New Zealanders support the Māori language, and

Hashimoto (2019) reports similar results from the late 2010s. Similarly, Sibley and

Liu (2007) present experimental evidence showing that Pākehā endorse a bicultural

view of New Zealand both implicitly and explicitly. Such attitudinal changes seem

to have redefined what it means to be a New Zealander; Liu, Wilson, McClure, and

Higgins (1999) show that Pākehā university students ascribe the label “European”

to their ancestors who committed injustices against the Māori, but do not choose

the same label for themselves, and Cormack and Robson (2010) present census data

showing the number of New Zealanders identifying ethnically as “New Zealander” (as

opposed to the racially-exclusive “New Zealand European”, or similar) has risen from

0.6% of the population in 1986 to 11.1% of the population in 2006.

Thus, a change in cultural attitudes toward Māori and Māori forms of language

appears to have been occurring for the past 30 years or so. Māori are increasingly

identified as part of the same group as Pākehā, weakening the stigma that enforced
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separationist attitudes previously. This attitudinal change provides a plausible moti-

vation for the increasing adoption of eh by Pākehā that is proposed by the change-

in-progress hypothesis, and a listener-based approach provides a parsimonious mech-

anism through which this motivation can be realized without the intention or even

awareness of speakers.

Of course, the motivation of language change by changes in Pākehā attitudes

toward Māori is not restricted to eh. The attitudes in question – and the perceptual

biases they engender – are based on Māori speakers, not (just) the linguistic features

that they use. Consequently, an explanatory focus on attitudes provides a way to

connect the hypothesized change-in-progress in eh with the adoption of other features

of Māori English, including phonological features (e.g. final /z/-devoicing; Holmes,

1996), prosodic features (e.g. syllable-timed rhythm; Nokes & Hay, 2012; Szakay,

2006), and lexical borrowings (e.g. Macalister, 2006).37 Indeed, previous studies have

highlighted the role of attitudes in the adoption of multiple features of Māori English,

as Pākehā who report positive attitudes toward Māori language and culture are more

likely to use a Māori word in an English sentence (Thompson, 1990) and to faithfully

realize /r/ as [R] in Māori loanwords (Hashimoto, 2019). The present study represents

an attempt to link the hypothesized adoption of eh by Pākehā with the adoption of

these other features of Māori English, and to provide a framework in which it can be

understood how and why changes in attitudes give rise to such adoptions.

37I do not mean to suggest that improvements in Pākehā attitudes will necessarily lead to the
wholesale adoption of all features of Māori English. The linguistic influences are not unidirectional:
over time, the English spoken by Pākehā has also influenced Māori English, as well as the Māori
language (see e.g. Maclagan, Watson, Harlow, King, & Keegan, 2009). More importantly, the
influences are not absolute: even as attitudes change, it remains the case that Pākehā and Māori are
different – with different social networks and language exposure profiles, different cultural practices,
and a different sense of self – and these differences will continue to be reflected both perceptually
and in terms of linguistic behavior. See Section 4.7 for further discussion.
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4.5 A corpus study

Since the results in the literature on eh in New Zealand (Section 4.4.1) disagree

with one another on the socio-demographic patterns of eh-usage among Pākehā, and

thus on whether high eh-usage by young Pākehā reflects age-grading or change-in-

progress, it is clear that more data are needed. In particular, there is a need for

data from many more speakers, to counteract issues of representativeness. In this

section, I introduce data drawn from a much larger (and hence, presumably, much

more representative) set of interviews than previously investigated (Section 4.5.1).

I apply rigorous quantitative methods to these data (Section 4.5.2), to test precise

predictions of each hypothesis (Section 4.5.3).

4.5.1 Data

The data used for this study come from the ONZE Corpus (Gordon et al., 2007),

which is composed of 3 sub-corpora of interviews collected at different times with

participants whose birthdates span almost the entire lifetime of New Zealand En-

glish. The main data I report on come from the contemporary Canterbury Corpus,

which features informal one-on-one sociolinguistic interviews with speakers born be-

tween 1926 and 1987, conducted between 1994 and 2007 by university undergraduate

students that usually knew the speaker well. No controls were placed on the socio-

demographic categorization of the interviewers, for example by matching their sex

with that of the speaker. The speakers in the corpus are balanced with respect to age

(young, born after 1960 and aged approximately 20–30 at time of interview, and old,

born prior to 1960 and aged approximately 45–60 at time of interview), sex (male

and female), and class (professional, scoring highly on both socio-economic scale and

level of education, and nonprofessional, scoring lowly on these scales). In the dataset,

there are 394 speakers in total, with approximately 50 speakers from each of the 8
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cells defined by intersecting the three socio-demographic categories (range 44–53).

It is not recorded in the corpus whether speakers identify as Māori; however, since

most speakers were born in the Canterbury region, where only 7% of the population

identified as Māori by the end of the interview collection period (Statistics New

Zealand, 2006b), it is likely that most are Pākehā. To coarsely guard against the

possibility that the results would contain Māori uses of eh, I searched the corpus for

instances of the word Māori, under the assumption that Māori speakers would talk

about their ethnicity at some point. I found a few speakers who actively identified

as Māori, but none of them used eh. This may be because they are not part of

a Māori community, in which case there would be little expectation that they use

Māori in-group markers. Comments from one speaker confirmed the relevance of this

factor, indicating that, though she was Māori by heritage, she was disconnected from

the Māori community and thus from the culture. Given this disconnection, I kept

speakers that were Māori by heritage but not by culture in the dataset; the results

remain qualitatively unchanged if they are removed.

I extracted all instances of eh from the Canterbury Corpus, excluding those that

were clearly requests for clarification, meta-linguistic commentaries, or fillers (with

the same orthographic transcription but different phonetic realization, i.e. [E] or [2]).

Cases for which an inclusion decision could not confidently be made on the basis of

the transcript were listened to for clarification and excluded if they contained rising

intonation, which signals a factual verification-seeking rather than positive politeness

function (Meyerhoff, 1994).

For each speaker, I recorded their age, sex and class, the number of times they

used eh in the interview, and the total number of words they uttered in the interview.

From this information, I calculated a variant of the eh-index proposed by Meyerhoff

(1994), which reflects the expected number of occurrences of eh in approximately
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100 minutes of interacting with a speaker or group, on average.38 The formula for

calculating this index is given in Equation (4.1).

eh-index for group G = 12000×
∑

s∈G uses of eh by speaker s∑
s∈G number of words uttered by speaker s

(4.1)

4.5.2 Methods

To assess the two hypotheses about eh-usage among Pākehā – age-grading and change-

in-progress – it is necessary to reliably establish the quantitative patterns in this eh-

usage. A first indication will be given by considering the overall picture of eh-usage

across each socio-demographic group as a whole, mirroring the analyses by Meyerhoff

(1994) and Stubbe and Holmes (1995). However, this overall picture will conflate two

important questions, which are expected to have different answers under a listener-

based approach (Section 4.3). Firstly, which socio-demographic groups use eh at all,

and which don’t? Secondly, how often do eh-users of different socio-demographic

groups use eh? In this section, I describe robust quantitative methods that establish

an overall picture of eh-usage among Pākehā and then break it down to answer the

questions of who uses eh, and how often.

Since the overall picture of eh-usage by Pākehā conflates the questions of who uses

eh, and how often, I do not use it to compare the age-grading and change-in-progress

hypotheses. Instead, I use the overall picture to compare the present data to those

of Meyerhoff (1994) and Stubbe and Holmes (1995), to get a sense of the reliability

of eh-indices and thus how the results of previous studies may generalize. For this, I

use resampling methods to calculate bias-corrected and accelerated (BCa) bootstrap

38Meyerhoff’s (1994) original formulation of the eh-index used a denominator measuring the
duration of the interview with the speaker; here, I use the number of words uttered by the speaker,
as it is independent of speech rate and restricts the calculation to the period in which the speaker
is talking. The multiplication by 12000 puts this new formulation on a similar scale to that of
Meyerhoff’s (1994) original formulation, under the assumption that the speaker talks for half of the
total interview and says an average of 4 words per second.
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confidence intervals.39 Under this method, a distribution of eh-indices is generated

for a group by randomly resampling its members with replacement (so that the same

member may be included multiple times, while another may be excluded outright),

calculating the eh-index for this resampled group, and repeating 5000 times. To

ensure that the results are not confounded by membership in control groups that are

not in question, members may not be reassigned between control groups; for example,

in calculating the confidence intervals based on class, a member that is originally in

both the professional and male groups may be reassigned to the nonprofessional group,

but not to the female group. BCa confidence intervals calculated from the distribution

of resampled eh-indices incorporate adjustments for the bias and skewness of the

distribution, effectively controlling for external constraints (such as the fact that

a speaker cannot utter negative instances of eh) and the presence of outliers and

high-leverage points (such as speakers who use eh disproportionately rarely or often)

(Haukoos & Lewis, 2005).

My main focus in the present analysis is on the questions conflated by the overall

picture: who uses eh, and how often. In order to answer these questions appropriately,

it is necessary to confront two fundamental issues raised by the distribution of eh over

speakers, which is both sparse and bursty. The distribution of eh is sparse because

many people do not use it in sociolinguistic interviews; in the present data, 79%

of speakers (311 of 394) do not use eh at all. This failure to use eh could be either

because the speaker does not have it in their linguistic repertoire – consistent with the

change-in-progress hypothesis – or because the right circumstances (discourse, social,

pragmatic, etc.) for using it did not arise in the interview – consistent with the

age-grading hypothesis. Similarly, the distribution of eh is bursty (or overdispersed)

39I also use bootstrapped confidence intervals when considering how often eh-users use eh, but
there are not enough datapoints to estimate appropriate BCa intervals. Instead, I use percentile
confidence intervals, whose endpoints are the 2.5% and 97.5% percentiles of the bootstrap distribu-
tion.
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because many people who do use eh in sociolinguistic interviews use it sparingly,

while a few people use it excessively; in the present data, 52% of eh-users (43 of 83)

have eh-indices less than 15, while the eh-indices of remaining eh-users range all the

way up to 140 (variance: 309.94).

To handle these issues, a robust quantitative analysis must do two things. Firstly,

it must consider both possible sources of failure of eh-usage equally, so as not to in-

duce artificial bias that gives a priori favor to one hypothesis over the other. Secondly,

it must be conservative in the face of extreme outliers, who are unlikely to represent

eh-usage among their socio-demographic group in general. To accomplish both of

these things while separating the questions of who uses eh and how often, I intro-

duce a new tool into the quantitative (socio)linguistics toolbox: zero-inflated negative

binomial (ZINB) regression.40 A ZINB regression model combines two distinct com-

ponents: a binary logistic regression component, which estimates the probability that

a speaker has eh in their linguistic repertoire, and a negative binomial regression

component, which estimates the individual-level eh-index for a speaker who has eh

in their repertoire. The binary logistic regression component answers the question of

which socio-demographic groups use eh. This answer does not exhibit a priori model

bias because the two components work together to split speakers who don’t use eh in

the interview, between those that don’t have it in their repertoire and those that do

but did not use it on that occasion (for whatever reason).41 The negative binomial

40The ZINB regression model that I use is instantiated in the pscl package in R (Zeileis, Kleiber,
& Jackman, 2008).

41Though the ZINB regression analysis makes a distinction between speakers who don’t use eh
because they lack it in their repertoire and those who have it in their repertoire but don’t use it in
the interview, it is ultimately still conducted based on observed instances of eh. Thus, the results
of the binary logistic regression component may be affected by certain speakers not using eh with
the interviewers. Nevertheless, in the absence of data that are perfectly controlled for content and
similarity / relationship between interlocutors, the ZINB regression analysis represents the best way
to separate the question of presence in the linguistic repertoire from the question of usage.
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regression component answers the question of how often eh-users of different socio-

demographic groups use eh. This answer is appropriately conservative because the

regression effectively downweights the influence of extreme outliers (for discussion,

see Appendix E).

I assume that different socio-demographic factors can influence each component of

the regression model. Thus, I consider the fit of each component separately: first, the

binary logistic regression component, and second, the negative binomial regression

component. In each component, I start from a maximal model containing all socio-

demographic categories and their interactions. I remove interactions in a stepwise

fashion if they do not significantly improve model fit, as assessed by model compari-

son likelihood ratio tests. I do not remove any non-interaction terms, so as to maintain

a full picture of the influence of socio-demographic categories. In the negative bino-

mial regression component, I also include an offset term of log (wordcount/12000),

which transforms the dependent variable of the regression from raw eh counts to eh-

indices and thus controls for the fact that different speakers utter different numbers

of words in total in their interview. Because the binary logistic regression component

is initially selected conditioned on a maximal negative binomial regression compo-

nent, I reconsider it after completing the selection process for the latter component,

adding interaction terms back into it in a stepwise fashion if they significantly improve

model fit. Though the two components are fit as part of the same model, I report

them separately as they bear on different questions of the analysis.

Finally, to assess how the questions of who uses eh and how often compare to one

another in their capacity to account for the corpus data, I compare the independent

contributions of the corresponding components of the ZINB regression model (the

binary logistic regression component and the negative binomial regression compo-

nent, respectively). To conduct this comparison, I consider two weaker versions of

the model, in each of which one component is reduced to a constant and the other
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component is preserved. I consider each weaker model in comparison to the full model

in which both components are preserved, using both likelihood ratio tests and AIC.

For comparison based on likelihood ratio tests, I consider a statistically significant

difference between the full model and a weaker model to indicate that the component

that has been reduced in the weaker model makes a substantial contribution to the

full model. For comparison based on AIC, I calculate the difference in AIC between

the full model and each weaker model. Following Burnham and Anderson (2002, p.

70), I interpret a difference of 10 or more to indicate that the component that has

been reduced in the corresponding weaker model makes a substantial contribution to

the full model, and a difference of 2 or less to indicate that it does not.

4.5.3 Predictions

Both the age-grading hypothesis and the change-in-progress hypothesis predict old

Pākehā to use eh less often than young Pākehā in sociolinguistic interviews, when

considering the overall general picture. However, their predictions differ in important

ways once the general picture is broken down into the questions of who uses eh, and

how often. Here, I walk through the different predictions for each question, and I

show how they can be tested by the corpus analysis.

In understanding these predictions, it is important to note that the notion of

repertoire is distinct from the notion of representation. All speakers have a represen-

tation for eh, reflecting their experience of others using it. However, only those who

have the potential to use eh themselves have it in their linguistic repertoire. In other

words, a speaker will have eh in their linguistic repertoire only if their representa-

tion of eh is located within the area of representational space that they draw upon

for their own production.42 For practical purposes, I assume that, once eh builds

42This approach is analogous to that of the ZINB regression model, where the speaker draws
samples from a bag of representations in production; eh is present in the repertoire if it is contained
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a sufficient foundation in the linguistic repertoire, it takes a long time to exit, even

if it is rarely used. I also assume that, while a speaker with eh in their repertoire

can actively choose to avoid or suppress it, it may nevertheless slip out occasionally.

Thus, a speaker who uses eh fluently at one point in time will likely have it in their

repertoire and still occasionally use it years later, even if they intend not to.43

The question of who uses eh can be interpreted as asking who has eh as a potential

resource in their linguistic repertoire and who does not. The age-grading hypothe-

sis does not predict any differences of this sort between different socio-demographic

groups, while the change-in-progress hypothesis (under a listener-based approach)

predicts several.

The age-grading hypothesis does not necessarily predict any socio-demographic

group to be more likely to have eh in their repertoire than any other. This prediction

follows because age-grading is concerned with the use or avoidance of a resource, which

implies that the resource must be available to be used or avoided in the first place.

As such, it holds regardless of whether age-grading is reflective of the community or

of the data sample. If age-grading is reflective of the community, then all speakers

are assumed to have used it at some point in their lives, which means that it is in

their linguistic repertoire, even if it is currently suppressed. Similarly, if age-grading

is reflective of the data sample, then all speakers are assumed to have the capacity

to use it, meaning that it is in the repertoire of all speakers, even though only some

speakers are observed to use it within the data due to properties of the data collection.

The change-in-progress hypothesis, on the other hand, predicts minimally that

young speakers should be more likely to have eh in their repertoire than old speakers.

in that bag.
43These assumptions have implications for the ZINB regression model, because it assesses the

probability that an individual has eh in their repertoire in part by considering the use of eh across
all demographically similar individuals. Thus, the isolated use of eh by a single member of a
demographic group is taken to indicate that multiple members of that group likely have eh in their
repertoire, even if they have suppressed it (or otherwise didn’t use it in their interview).
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This prediction follows from the apparent time construct (Cukor-Avila & Bailey,

2013), as it implies that change-in-progress – which, here, is the adoption of eh into

the linguistic repertoire – is most advanced among young speakers. A listener-based

approach provides further motivation for this predicted age-based difference, through

the assumption that the adoption of eh is driven by changes in attitudes, which are

most strongly evident among young Pākehā.

A listener-based approach also predicts that eh should be more likely in the reper-

toire of male and nonprofessional Pākehā than in that of female and professional

Pākehā. This prediction follows from the fact that eh-usage in Māori is highest

among males and nonprofessionals (Meyerhoff, 1994), in two different ways. Firstly,

if Pākehā interactions with Māori are skewed toward members the same sex and/or

class, then male and nonprofessional Pākehā will experience eh more as listeners, and

even weak influences of those experiences will add up over time.44 Secondly, even if

all Pākehā have similar degrees of experience with eh from Māori, not all experiences

will carry equal weight. According to a listener-based approach, listeners assign more

weight to an experienced token the more similar they perceive the speaker to be to

them. Since eh is produced most by male and nonprofessional Māori, the correspond-

ing Pākehā listeners stand to gain the most from such differential weighting.

Since the two hypotheses make different predictions with respect to the question of

who uses eh, they can be tested. In particular, these predictions can be tested by the

binary logistic regression component of the ZINB regression analysis, which measures

the probability that a given Pākehā has eh in their linguistic repertoire, according to

their membership in socio-demographic groups. Under the age-grading hypothesis,

44The differences in degrees of experience are particularly pronounced for class, as Māori are
overrepresented among nonprofessionals. For example, in the New Zealand Census in 2006 (close to
time at which the last interviews in ONZE were conducted), the median Māori income was approxi-
mately 20% lower than the median Pākehā income, and the proportion of Māori on a governmental
benefit was more than twice the proportion of Pākehā on a governmental benefit (Statistics New
Zealand, 2006a).
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this analysis is predicted to show no significant effects; under a listener-based approach

to the change-in-progress hypothesis, it is predicted to show significant effects of

age (young > old), class (nonprofessional > professional), and sex (male > female).

Further support for the comparison of predictions about who uses eh can be gained

from considering the historic component of the ONZE corpus. If a similar number

of people (within the same age group) use eh at earlier points in (real) time as in

the Canterbury Corpus, then the age-grading hypothesis will gain further support;

conversely, if fewer people use eh at earlier points in time, then the change-in-progress

hypothesis will gain further support.

The question of how often Pākehā use eh must be restricted to those who are

assessed to have eh in their linguistic repertoire, whom I will refer to as eh-users.

Among these eh-users, the age-grading hypothesis predicts there will be differences

based on socio-demographic group, but the change-in-progress hypothesis does not.

The age-grading hypothesis minimally predicts that young eh-users should use

eh more than old eh-users. This prediction follows from the fact that age-grading

is concerned with differences in usage, not differences in underlying capacity. The

age-grading hypothesis also makes further predictions if it is due to properties of the

data sample rather than properties of the community. In this case, the hypothesis

holds quite generally that eh-usage is facilitated amongst interlocutors from similar

socio-demographic groups, because it allows them to emphasize aspects that may

be expected to be shared on the basis of group membership (see also Bell, 2001).

Since the interviewers in the present data are university students, and therefore fairly

homogeneous with respect to age and class, this prediction can only be applied on

the basis of sex. Specifically, then, the age-grading hypothesis predicts that eh-usage

among males should be highest with male interviewers, and eh-usage among females

should be highest with female interviewers.

Unlike the age-grading hypothesis, the change-in-progress hypothesis makes no
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predictions about differences in eh-usage among eh-users, following its focus on dif-

ferences in underlying capacity rather than usage. If eh is spreading through all

Pākehā, then it is not expected to function as a demographic marker, with degree

of usage depending on the demographics of the speaker. Instead, in line with its

discourse function, its degree of usage is expected to depend upon interpersonal and

situational factors, which vary widely independent of who the speaker is. Further-

more, the degree of eh-usage among eh-users can reasonably be expected to show

different patterns than the distribution of eh-users themselves, as a repetition of the

same patterns would suggest that they are indicative of a demographic marker rather

than change-in-progress.

A listener-based approach to the change-in-progress hypothesis goes one step fur-

ther, predicting that all eh-users will use eh to similar extents.45 This prediction

is motivated by the idea that an individual will build the strength of eh in their

representations quickly after adopting it, due to the concomitant increases in per-

ceived typicality (see Section 4.3). If there are isolated groups of eh-users with lower

eh-usage than others, a listener-based approach to the change-in-progress hypothesis

expects that these eh-users have only recently added eh to their linguistic repertoire

and are still building up experience with it.

The different predictions of the two hypotheses with respect to the question of how

often Pākehā use eh can be tested by the negative binomial regression component of

the ZINB regression analysis. The two-component nature of ZINB regression ensures

that this analysis is restricted to eh-users, unlike the overall general picture. Under

the age-grading hypothesis, this analysis is predicted to show a significant effect of age

45The suggestion that all eh-users should use eh to similar extents is not a contradiction of the
insight that change-in-progress typically creates structured heterogeneity (Weinreich et al., 1968;
see also Labov, 2001, and Section 4.2.1). Change-in-progress creates structured heterogeneity with
respect to the question of who uses (or has the potential to use) eh, but not how often they do so.
Eh has nuanced functional (and distributional) differences from other discourse tags, so its adoption
need not introduce new alternations in which frequency of use would be crucially implicated.
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(young > old); under a listener-based approach to the change-in-progress hypothesis,

it is predicted to show no significant effects. Further (indirect) testing of the age-

grading predictions can be gained from considering how eh-usage varies depending

on the sex of the interviewee and the interviewer. The ideas underlying (one version

of) the age-grading hypothesis predict higher eh-usage when both interlocutors are

the same sex.

Finally, the two hypotheses can be compared to one another in terms of their

exclusive capacity to explain the data by comparing the independent contributions of

the two components of the ZINB regression model. The change-in-progress hypothesis

alone makes non-null predictions for the question of who uses eh, reflected in the

binary logistic regression component of the model. The age-grading hypothesis alone

makes non-null predictions for the question of how often eh-users use eh, reflected

in the negative binomial regression component of the model. Correspondingly, the

change-in-progress hypothesis predicts that the binary logistic regression component

makes a substantial contribution to the model but the negative binomial regression

component does not, and the age-grading hypothesis predicts the converse.

4.6 Results

In this section, I analyze what the ONZE data introduced in Section 4.5.1 have to

say about the use of eh by young Pākehā. First, in Section 4.6.1, I establish the

overall general picture of the data and compare it with the picture obtained from

previous studies (Meyerhoff, 1994; Stubbe & Holmes, 1995). Next, in Sections 4.6.2

and 4.6.3, I present the results of the robust quantitative analysis described in Section

4.5.2, to test the predictions of the age-grading and change-in-progress hypotheses

described in Section 4.5.3. These results yield support for the change-in-progress

hypothesis. Finally, in Section 4.6.4, I turn to a qualitative approach in order to
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Figure 4.2: Group-level eh-indices across age, class, and sex. Error bars indicate bootstrapped BCa
95% confidence intervals. Calculations include all speakers, regardless of whether they use eh or not.

assess whether there is any evidence that Pākehā adoption of eh is associated with

changes in attitudes toward Māori, as expected under a listener-based approach.

4.6.1 General picture

Figure 4.2 shows the overall general picture obtained from comparing group-level eh-

indices across all socio-demographic groups in the ONZE data. Since this picture

conflates the questions of who uses eh and how often, I do not use it to perform

statistical tests. Rather, I compare it impressionistically to the pictures obtained

from the previous studies by Meyerhoff (1994) and Stubbe and Holmes (1995), and I

use it to gauge the reliability with which generalizations can be made from this kind

of data.

For age and class, the ONZE data yield overall general patterns that resemble

those seen in both previous studies. In the data of both Meyerhoff (1994) and Stubbe

and Holmes (1995), group-level eh-indices were higher for young Pākehā than for

old Pākehā, and for working-class (nonprofessional) Pākehā than for middle-class
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(professional) Pākehā. Figure 4.2 shows the same patterns in the ONZE data. Since

these patterns are observed across all three datasets, and since, in the ONZE data,

the corresponding confidence intervals (i.e. for groups distinguished only by age or by

class) are almost all non-overlapping, it is likely that they are reliable in general.

For sex, however, the patterns are not so clear. In the data of Meyerhoff (1994),

group-level eh-indices were highest for female Pākehā, particularly among young

speakers, but in the data of Stubbe and Holmes (1995), they were highest for (young)

male Pākehā. In the ONZE data (Figure 4.2), eh-indices are numerically highest for

males among young speakers, but for females among old speakers. However, the large

degrees of overlap in confidence intervals indicates that these numerical differences are

likely a reflection of the data sample, not of the underlying population. The ONZE

data therefore indicate that there may be no reliable and generalizable effect of sex

on overall general eh-index.

It was differences between Māori and Pākehā in the effect of sex that led Mey-

erhoff (1994) to suggest the age-grading hypothesis as an alternative to the change-

in-progress hypothesis (see Section 4.4.1). The indication from the ONZE data that

such differences may not be reliable does not nullify this suggestion, but it does put

the two hypotheses on even ground. More generally, the wide confidence intervals

observed in the ONZE data indicate a substantial amount of uncertainty, in spite of

the large number of speakers per cell. Given that previous studies contained approx-

imately ten times fewer speakers per cell, the ONZE data suggest that conclusions

drawn from these studies may be driven by non-representative data samples, and thus

may not be appropriately generalizable.

4.6.2 Who has eh in their repertoire?

Who uses eh? Or, more precisely, who has the potential to use eh, through hav-

ing it in their linguistic repertoire? Recall from Section 4.5.3 that the age-grading
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Figure 4.3: Proportion of speakers who use eh in their interview. Proportions and 95% confidence
intervals are calculated from raw data. Calculations are by age × class × sex cell and count any
speaker who used eh (at least once) in the interview, regardless of the number of times they used it.

hypothesis does not predict any differences in the number of eh-users from different

socio-demographic groups, while a listener-based approach to the change-in-progress

hypothesis predicts there to be more young eh-users than old, more nonprofessional

eh-users than professional, and more male eh-users than female.

A first indication can be gained from the raw data, by considering the proportion

of speakers in each socio-demographic cell who use eh at least once in their interview.

These raw values are presented in Figure 4.3. As can be seen, the proportion of

eh-users appears to be larger for nonprofessionals than for professionals, for young

speakers than for old speakers, and for males than for females.

The differences in the raw data presented in Figure 4.3 could be misleading, as it

is possible that some speakers have eh in their linguistic repertoire but nevertheless

failed to use it in the interview (for whatever reason). The ZINB regression analysis

provides a way to test the statistical significance of differences in eh-users across socio-

demographic categories while guarding against this possibility. The binary logistic
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Table 4.1: Binary logistic regression component of ZINB analysis of eh. The model predicts the
probability that a speaker has eh in their linguistic repertoire. Coefficient estimates indicate how
much more likely members of the corresponding social group are to have eh in their repertoire, rela-
tive to members of the relevant reference group (log-odds scale). The reference groups (incorporated
in the Intercept) are professional, old, and female.

Estimate Std. Error z-value Pr(> |z|)
(Intercept) −2.7313 0.8085 −4.232 0.0359 ***
Class = Nonprofessional 1.4322 0.5606 2.555 0.0106 *
Age = Young 2.1900 0.6223 3.519 0.0004 ***
Sex = Male 1.0346 0.5929 −1.745 0.0810 .

Overall ZINB model: AIC = 710.28; BIC = 750.05; logLik = −345.14; df = 10; N = 394

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1

regression component of the analysis, which estimates the probability that a speaker

has eh in their linguistic repertoire, is reported in Table 4.1.

The model shows that nonprofessional and young Pākehā are significantly more

likely to have eh in their linguistic repertoire than professional and old Pākehā, re-

spectively. It also suggests that male Pākehā may be more likely to have eh in their

linguistic repertoire than female Pākehā, though this difference does not quite reach

statistical significance. These results are not expected from the age-grading hypothe-

sis, but they closely match the predictions of the change-in-progress hypothesis. Thus,

consideration of who uses eh lends support to the change-in-progress hypothesis.

To further test the change-in-progress hypothesis, it is useful to consider earlier

points in time. The hypothesis predicts that fewer Pākehā used eh at earlier points in

time, regardless of age. To test this prediction, I searched the historical component of

the ONZE corpus that immediately precedes the Canterbury Corpus, the Intermediate

Archives. This component of the corpus consists of interviews with old speakers (born

between 1890 and 1930; aged 60 and upwards at the time of interview) recorded in

the early 1990s, up to 15 years before the interviews in the Canterbury Corpus. Out

of 87 speakers, I found just one who used eh in their interview, and then only as

a metalinguistic commentary (discussed in detail in Section 4.6.4). This number is
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significantly smaller than what would be expected based on the Canterbury Corpus,

where 13 out of 194 old speakers used eh at least once in their interview (p = 0.037,

one-tailed Fisher’s exact test). While this result doesn’t preclude the possibility of an

age-based bias against eh-usage – since the old speakers in the Intermediate Archives

are older than those in the Canterbury Corpus – the complete absence of naturally-

occurring eh in the Intermediate Archives is striking and reinforces the support for

the change-in-progress obtained from the Canterbury Corpus.

4.6.3 How often do eh-users use eh?

How often do the eh-users in each socio-demographic group use eh? Again, the two

hypotheses predict different answers to this question (Section 4.5.3). The age-grading

hypothesis predicts that young eh-users will use eh more than old eh-users, while the

change-in-progress hypothesis does not predict any differences in eh-usage between

eh-users from different socio-demographic groups.

An indication of rates of eh-usage by eh-users in different socio-demographic

groups can be obtained from the raw data. Figure 4.4 shows the mean individual-level

eh-indices for each cell of the corpus design, restricted to speakers who use eh at least

once in their interview. By comparing Figure 4.4 to Figure 4.3, it is clear that the dif-

ferences in use of eh among members of different groups are much more modest than

the differences in the number of eh-users in different groups. For example, though

nearly 14 times more young male nonprofessionals than old female professionals use

eh at least once in their interview (60.4% vs. 4.5%), the average young male nonpro-

fessional eh-user uses eh only approximately twice as often as the average old female

professional eh-user (mean individual-level eh-index of 28.8 vs. 13.0).

However, again, the differences in the raw data (Figure 4.4) could be misleading

– a possibility that is highlighted by the large, overlapping confidence intervals. To

gain a reliable indication of any differences in eh-usage among eh-users, an analysis
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Figure 4.4: Mean individual-level eh-indices of eh-users. Calculations are based on bootstrapping
raw data, grouped by age × class × sex cell, and include all speakers who used eh (at least once) in
the interview. Error bars indicate 95% bootstrap percentile confidence intervals.

must account for speakers who have eh in their linguistic repertoire but did not use

it in the interview, and for the presence of extreme outliers. The ZINB regression

analysis accounts for these things, allowing it to test the statistical significance of the

differences in eh-usage. The negative binomial regression component of the analysis,

which estimates the eh-index of a speaker who has eh in their linguistic repertoire, is

reported in Table 4.2.

The model shows that most eh-users use eh to similar extents (at least, in the

interview setting represented in the corpus). There is no statistically significant dif-

ference in eh-usage by eh-users based on class (nonprofessionals vs. professionals).

Among female eh-users, there is also no difference based on age: young and old fe-

male eh-users use eh to similar extents. However, among male eh-users, there is a

significant difference based on age: young male eh-users use eh more than old male

eh-users. The model suggests that this effect is driven by the lower use of eh among

old male eh-users than among old female eh-users; young eh-users all use eh to a
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Table 4.2: Negative binomial regression component of ZINB analysis of eh. The model predicts
the average individual-level eh-index of a speaker with eh in their linguistic repertoire. Coefficient
estimates indicate how much higher the eh-index is expected to be for eh-users in the corresponding
social group, relative to members of the relevant reference group (log scale). The reference groups
(incorporated in the Intercept) are professional, old, and female.

Estimate Std. Error z-value Pr(> |z|)
(Intercept) 1.9518 0.6760 2.887 0.0039 **
Class = Nonprofessional 0.5315 0.3867 1.374 0.1694
Age = Young 0.3002 0.6203 0.484 0.6284
Sex = Male −1.4322 0.7803 −1.836 0.0664 .
Age = Young & Sex = Male 1.6241 0.8031 2.022 0.0431 *

Overdispersion parameter: log (θ) = −0.9058, std. error = 0.3084, z = −2.937, p = 0.0033
Overall ZINB model: AIC = 710.28; BIC = 750.05; logLik = −345.14; df = 10; N = 394

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, .p < 0.1

similar extent, regardless of sex.

The model results do not align exactly with the predictions of either hypothe-

sis. The age-grading hypothesis predicted an effect of age, but this effect was only

partially observed, for male eh-users but not female eh-users. The question for the

age-grading hypothesis then becomes why old female eh-users use eh so often. There

are two possible answers to this question, depending on whether age-grading reflects

a property of the community or the data sample. If age-grading reflects a property

of the community, then it could be that the reasons that cause speakers to suppress

eh as they age – for example, overt stigma – are weak among females. Alternatively,

if age-grading reflects a property of the data sample, then it could be that the old

female speakers share many values, beliefs, and opinions with their interviewer that

can be emphasized by eh,46 or at least attempt to convey such sharing as a positive

politeness strategy (Holmes, 1995). The change-in-progress hypothesis, on the other

hand, did not predict any effects – though, as noted in Section 4.5.3, it is not nec-

essarily incompatible with isolated effects. The question for the change-in-progress

46The possibility that old female eh-users share more values, beliefs, and opinions with the in-
terviewer than their male counterparts would not be surprising, given that more than 75% of the
interviewers are young female undergraduates.
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hypothesis then becomes why old male eh-users use eh so little. The answer suggested

by a listener-based approach is that old male eh-users may be relatively new to the

adoption of eh, and may still be accumulating experience to solidify its place in their

linguistic representations. An alternative answer is the flipside of the answer given

for the age-grading hypothesis as a reflection of a property of the data sample: old

male eh-users may share few values, beliefs, and opinions with their interviewer that

can be emphasized by eh.47

It is clear that further investigation is necessary in order to assess which of the

hypotheses better align with the effects on eh-usage by eh-users identified by the

ZINB regression analysis. As a first step toward such investigation, I consider how

the socio-demographic similarity between the speaker and the interviewer affects the

eh-usage of an eh-user. This approach allows me to test the fundamental idea be-

hind the age-grading hypothesis, viewed as reflecting a property of the data sample,

according to which eh-usage should be highest between interlocutors who are socio-

demographically similar. Because the interviewers are all undergraduate students,

I group speakers and interviewers by sex; I collapse across age and class groups in

order to counter data sparsity stemming from the fact that more than 75% of the

interviewers are female. The mean individual-level eh-indices calculated from this

grouping in the raw data are illustrated in Figure 4.5.

Although, numerically, the eh-indices for eh-users do appear higher when the

speaker and interviewer are the same sex, the large, overlapping confidence intervals

suggest that any differences are unlikely to be reliable. In line with this suggestion,

including interviewer sex and its interaction with speaker sex in the ZINB regres-

sion analysis did not yield statistically significant effects or result in a statistically

47The notion that old male eh-users use eh so little because they share few values, beliefs, and
opinions with their interviewer does not follow from the details of a listener-based approach, but
rather from the socio-pragmatic discourse function of eh. The usage of eh according to its function
is not inconsistent with the principle that the adoption of eh is driven by processes in perception.
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Figure 4.5: Mean individual-level eh-indices of eh-users, by interviewer sex. Calculations are based
on bootstrapping raw data, grouped by age × class × sex cell, and include all speakers who used eh
(at least once) in the interview. Error bars indicate 95% bootstrap percentile confidence intervals.

significant improvement in model fit (χ2(2) = 3.46, p = 0.18). Though little can

be concluded from this null result, it suggests that the effect identified by the ZINB

regression analysis is limited to a difference in eh-usage between old male eh-users

and old female eh-users, rather than reflecting a larger pattern. Since the age-grading

hypothesis depends upon the existence of such a larger pattern in eh-usage, whereas

the change-in-progress hypothesis does not, I argue that consideration of the question

of how often eh-users use eh lends support to the change-in-progress hypothesis.

Finally, additional support for the change-in-progress hypothesis over the age-

grading hypothesis is provided by comparing the independent contributions of the

two components of the ZINB regression model. According to likelihood ratio tests,

a weakened model in which the binary logistic regression component is reduced to a

constant and the negative binomial regression component is preserved fits the data

significantly worse than the full model (χ2(3) = 17.31, p < 0.001), while one in

which the negative binomial regression component is reduced to a constant and the

binary logistic regression component is preserved fits the data only marginally worse

than the full model (χ2(4) = 9.08, p = 0.059). Similarly, a model in which just

the binary logistic regression component is reduced yields a increase in AIC of 11.3
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relative to the full model (721.6 vs. 710.3), while a model in which just the negative

binomial regression component is reduced yields an increase of just 1.1 (711.4 vs.

710.3). All of these results match the predictions of the change-in-progress hypothesis

and oppose those of the age-grading hypothesis, as they indicate that patterns in who

uses eh – as captured by the binary logistic regression component – make a substantial

contribution in accounting for the data, while patterns in how often eh-users use eh

– as captured by the negative binomial regression component – do not.

4.6.4 Hints of attitudes: qualitative analysis

All things considered, the quantitative results from the ONZE Corpus suggest that

the use of eh by young Pākehā is more likely a reflection of change-in-progress than of

age-grading. However, they can give no answers to the question of why this change is

occurring. A listener-based approach claims that changes in social attitudes toward

Māori should play a role in increasing Pākehā adoption of eh (provided eh retains

perceptual associations with Māori over time). In this section, I pursue evidence for

this claim, by conducting a qualitative analysis that looks closer at the data against

the general backdrop of social change in New Zealand.

As described in Section 4.4.2, the last 30 years or so have seen improvements in

the way that Māori are treated in New Zealand society, together with corresponding

shifts in the attitudes of Pākehā, from stigma to bicultural fusion. These shifts

are also evidenced in two naturally-occurring metalinguistic commentaries from the

ONZE corpus, referencing times that are 50 years apart.

In (C1), an older Pākehā man, recalling events from approximately 1940, states

that an association between eh and Māori caused him to have to abandon an eh-using

habit in order to avoid being bullied as a child. Not only did the other children in this

excerpt view eh as a negative feature due to its association with Māori, as evidenced

by the fact that they bullied him for it, but the speaker also soon learned to view it
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as a negative feature, as he “very quickly” stopped using it and now refers to it as

“the worst thing” about his childhood.

(C1) but . the worst thing was that

. we used to talk a little bit like the Māoris and we used to say

“What do you think of that, eh?”

. um . I never . I never did say . “I seen this” I used to say “I saw this”

e- and yet a lot of kids in in Rotorua did say “I seen this” and “I done that”

um

and those were very common in Rotorua

. I didn’t do that but at . I used to say . “What do you think of that, eh?”

“Good, eh?” everything was . with an eh and of course

. it was pretty hard to stop myself doing that and I had to very quickly

but

. for the first few days at school

. it made me a bit of a butt of their humor and um

. as I say I had a quick temper and I didn’t . take insults

. so I got into a lot of fights

In (C2), a younger Pākehā man (S), talking about attitudes in 1994 (50 years

since (C1)), also identifies an association between eh and Māori, but does not ascribe

stigma to eh as a result. In fact, his suggestion that eh could be interpreted as

“common” (and thus stigmatized) is rejected by the interviewer (I), and he makes no

attempt to appeal this rejection. It is only after the rejection of eh being “common”

that he presents the association with Māori as an alternative, making it clear that

Māori are not negatively evaluated.

(C2) S: Does eh make me sound co- common?

I: Eh?
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S: Eh.

I: I don’t think so.

S: Or is it just because I’ve been ha- .

S: um . got on a course with lots of Māori students at the moment.

I: Yeah they would say it.

These two commentaries clearly show differences in Pākehā attitudes toward Māori

over time, in a way that is explicitly evoked through the use of eh. These attitudinal

differences are demonstrated explicitly through the content of the commentaries, as

previously discussed, as well as implicitly through their forms. For example, the word

Māori in Te Reo Māori is pronounced [mA:ORi] and does not inflect when plural. The

old speaker’s treatment of this word in (C1) shows little respect for, or awareness of,

Māori norms: he anglicizes it, pronouncing it [mæ:ôi] and inflecting it with English

plural morphology. Conversely, the young speaker’s treatment in (C2) shows respect

and awareness: he pronounces it [mAORi] and chooses an alternative phrasing that

does not require it to be inflected. Similarly, the old speaker’s use of the definite

article in reference to “the Māoris” betrays a monolithic attitude of social othering

(Acton, 2019), while the young speaker’s reference to “Māori students” suggests a

more individuated attitude, in which Māori are put on even ground by sharing his

status of being a student.

The two commentaries analyzed here provide support for key components of a

listener-based approach to Pākehā adoption of eh. They show the prerequisite for

a listener-based approach, which is that the perception of an association between

eh and Māori has been maintained over time, even as Pākehā begin to adopt eh.

They show the main ingredient for a listener-based approach, which is that Pākehā

attitudes toward Māori – and toward the use of eh, in recognition of its association

with Māori – have improved over time, both explicitly and implicitly. And, finally,

they show the outcome of a listener-based approach, which is that, while eh used to
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be blocked in Pākehā speech due to strong social stigma, its widespread usage now

may be because such stigma is no longer prevalent.

4.7 Discussion

The first part of this chapter established parallel effects on speech perception and lan-

guage change from language-internal factors, such as word frequency, and language-

external factors, such as social information and attitudes. In doing so, it laid out an

extension of the listener-based approach developed in previous chapters to social ef-

fects in language change. The second part of this chapter picked up that extension and

applied it to an open question about English in New Zealand, which asks why young

Pākehā use the Māori-associated tag particle eh. The listener-based approach not only

allowed the formulation of precise predictions for testing whether Pākehā patterns of

eh-usage reflect age-grading or change-in-progress, but also provided a reason for why

change-in-progress may be occurring, which integrates the wider socio-cultural and

ideological landscape of New Zealand with established passive but powerful percep-

tual biases. A large corpus study supported the hypothesis that the use of eh by

young Pākehā reflects change-in-progress, as well as the hypothesis that such change

is related to changes in social attitudes.

The story told by a listener-based approach to Pākehā eh-adoption is as follows.

More than 50 years ago, speech from Māori evoked strong negative social attitudes

among Pākehā. As discussed in Section 4.3, this caused features of Māori speech such

as the word eh to be perceived as atypical with respect to Pākehā speech and thus

to have little influence on the representations that Pākehā drew upon for their own

speech production. That is, the negative social attitudes toward Māori effectively

blocked the uptake of eh among Pākehā. As Pākehā started to view Māori more

positively, however, they started to view Māori speech as more typical, causing Māori
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features to become more strongly represented in the linguistic knowledge underlying

their own productions. Thus, the improvement in social attitudes toward Māori

allowed Pākehā to begin using eh in their own speech.48

Crucially, under a listener-based approach, the explanation for Pākehā eh-adoption

does not depend upon intentions or awareness on the part of the speaker, which may

be practically impossible to identify as an external observer. While it is possible that

Pākehā originally actively avoided sounding like Māori because of social stigma and

then began actively trying to sound like Māori when this stigma was weakened, such

explicit avoidance and imitation is not necessary to explain the widespread pattern

of change.49 A listener-based approach provides an alternative explanation in which

the Pākehā use of eh increased passively and subconsciously, drawing parsimonious

connections between the change and known processes of speech perception.

The shift in attitudes in New Zealand is not limited to a simple improvement in

the way that Māori are perceived; it is also changing the socio-cultural ideological

landscape of New Zealand. Māori are going from being viewed as separate from

Pākehā to being viewed as key partners in a bicultural fusion embodying the notion

of New Zealander, or Kiwi50. A listener-based approach predicts that this change in

what it means to be a New Zealander has repercussions for the use of Māori features

such as eh in Pākehā speech above and beyond those of a simple improvement in

attitudes. If both Māori and Pākehā are perceived as Kiwi, then the speech of both

48The story of Pākehā eh-adoption told by a listener-based approach is, of course, a generalization
of default behavioral tendencies at the population level. It remains possible for individuals to stray
from this default behavior. For example, a speaker may intentionally refrain from using eh even
with a positive attitude toward Māori for any number of independent reasons, such as not thinking
it appropriate to identify with Māori, or disliking the word itself.

49A listener-based approach does not rule out the possibility that some speakers may (have)
intentionally use(d) eh on some occasions in order to express an affiliation with Māori. It simply
does not require such intentional usage to be widespread in order to derive the widespread patterns
of change.

50The word kiwi is from the Māori language. It originally referred to the national bird of New
Zealand, and is now commonly used with pride to refer to the people of New Zealand, irrespective
of ethnicity (see e.g. Onysko & Calude, 2013).
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groups yields a common social inference. This common underlying social inference

allows the socially-induced perceptual biases for one group to be partially activated

by speech from the other group (cf. Szakay et al., 2016). The result is that listeners

come to expect – and thus accept – eh in the speech of Pākehā more, so that when it

does occur, it isn’t downweighted in memory as much by residual negativity toward

Māori. In other words, if listeners reduce their separation of Māori and Pākehā

in terms of socio-cultural ideology, then they should also reduce their separation in

terms of perception. By consequence, a listener-based approach predicts that there

should be fewer barriers that prevent speakers of either group from successfully using

features from the other group, making it easier for eh to spread throughout the Pākehā

population.

Of course, though the degree of ideological and perceptual separation between

Pākehā and Māori may reduce, it is likely that Pākehā and Māori will never be

ideologized or perceived as identical. Pākehā and Māori may both be Kiwi, but

Pākehā are not Māori, and vice-versa; the two groups have different cultural practices

and a different sense of self. Consequently, it is not a necessary consequence of

a listener-based approach that the two groups will linguistically assimilate to each

other totally in the hypothetical eventuality that listeners come to hold identical

evaluative attitudes toward them. Rather, given the maintenance of some degree

of ideological and perceptual separation, a listener-based approach predicts that the

two groups should continue to exhibit some linguistic differences. This prediction

can even be seen from simple differences in quantity of experience: if – for whatever

reason – Māori generally have more interaction with Māori English speakers than

do Pākehā, then changes originating in Māori English will spread faster through the

Māori community than they will through the Pākehā community, providing a seed

for continued linguistic differentiation between the groups.

Stepping back, the fact that a listener-based approach derives effects of social
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attitudes on language change through perceptual biases opens the door to new kinds

of evidence in studying language change. As attitudes change, not only is language

production expected to change, but so is language perception. Thus, differences

across age groups in perceptual tasks can be used as evidence for change under the

apparent time construct. For example, with the adoption of eh by Pākehā over

time, representations of eh as a feature of Pākehā speech are expected to be stronger

among young listeners than among old listeners. Correspondingly, young listeners are

expected to exhibit more expectation bias that facilitates the processing of eh when

uttered by a Pākehā speaker. Such differences in expectation bias can be measured

through perceptual tasks such as word monitoring (Marslen-Wilson & Tyler, 1980),

and can help to support the claim of change-in-progress.

Furthermore, in the case where language change is related to attitudinal change,

the listener-based approach can use perception experiments to recruit evidence for

language change that is independent of age-graded patterns. Since the effects of

social attitudes on perception are not limited to differences between listeners of dif-

ferent ages, the listener-based approach predicts that variation within an age group

in perceptual tasks should be correlated with variation in related social attitudes. For

example, the more positive and inclusive a Pākehā listener’s attitude toward Māori,

the stronger their representation of eh as a feature of Pākehā speech, and the more

they will exhibit expectation bias toward it from a Pākehā speaker. The quality of

the attitude is therefore predicted to be correlated with performance in tasks such

as word monitoring, even within a particular age group. If this prediction holds, it

provides support for the hypothesized causal mechanism behind change-in-progress,

thereby indirectly supporting the claim of change-in-progress itself.

By drawing on additional evidence from perception experiments, a listener-based

approach brings new perspectives to the question of whether an age-based difference

in production reflects age-grading or change-in-progress. In addition, a listener-based
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approach makes extremely salient the distinction of who uses a certain linguistic

feature from how often they use it, by emphasizing the parallel distinction between

the way linguistic representations are built and updated in perception and the way

they are drawn upon in production. Though age-grading and change-in-progress have

the same general appearance in overview, they make different predictions from each

other for these questions. By using zero-inflated negative binomial regression, which

this chapter has added to the quantitative linguistics toolbox, these predictions can be

tested on corpus data. Since the specters of age-grading and change-in-progress loom

in all age-based analyses of language variation, a listener-based approach promises to

be of broad and important influence.

4.7.1 General predictions

Because the listener-based approach is based on general influences of social informa-

tion and attitudes on speech perception, it can be applied to much more than just

the case of Pākehā eh-adoption. In particular, it makes some very general predic-

tions about the social circumstances under which language change will be more likely

to take off or will spread faster throughout a population. For example, it predicts

that the probability or rate with which a change spreads will be influenced by social

network structure. Specifically, it predicts that a speaker will be more likely to partic-

ipate in a change the more they experience tokens reflecting the change as a listener,

as that experience is what builds up the representations that they draw upon for

production. It further predicts that this process will be facilitated if the experience

comes from a variety of speakers, since then the listener is unlikely to attribute the

change to an idiosyncrasy and perceptually normalize for it. Moreover, as indicated in

Section 4.3, a listener-based approach predicts that a change will spread more quickly

and easily the more listeners perceive themselves to be similar to speakers who have

undergone the change, and the more positive and inclusive listeners’ social attitudes
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toward speakers who have undergone the change.

These general ideas coalesce in addressing the question of which members of a

societally dominant group (e.g. based on ethnicity) will readily pick up linguistic

features of a non-dominant group, thereby potentially introducing or facilitating lan-

guage change across the population of the dominant group. As in the case of lexical

adoption of eh by Pākehā, the prediction is that the working class constitutes a

hotbed for introducing such changes. First and foremost, this prediction follows from

social network structure. Since non-dominant groups are typically overrepresented in

the working class, members of the dominant group who are in the working class will

experience the feature most as listeners, from a wide variety of speakers. As described

above, this high degree of exposure will facilitate the strengthening of the feature in

the representations they drawn upon for their own productions. The prediction gains

further support from the idea that members of the same class are more likely to share

experiences in work and life than members of different classes. Members of the dom-

inant group in the working class are thus more likely than those in the middle and

upper class to perceive members of the non-dominant group as similar to themselves,

and may also be more likely to develop positive and inclusive attitudes toward them,

both of which decrease perceptual barriers to adopting their linguistic features.

4.8 Summary

Language change is affected by social information and attitudes. This chapter has

focused on how the listener-based approach developed in previous chapters can extend

to explain the role of social information and attitudes in language change. In Section

4.1, I grounded this extension by reviewing evidence that social information and

attitudes play a major role in language change and yield perceptual asymmetries,

just like lexical information such as frequency (Chapter 3). In Section 4.3, I discussed
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how socially-based asymmetries in experience and perception create asymmetries in

socially-based language change, using mechanisms familiar from the model developed

in Chapter 2. In Sections 4.4–4.6, I presented new evidence for the spread of the tag

particle eh in New Zealand from Māori to Pākehā, and I showed how a listener-based

approach explains this spread to have been facilitated by improvements in Pākehā

attitudes toward Māori.

The extension of the listener-based approach to socially-based language change is

a natural one, because linguistic experience – which is taken to underpin linguistic

knowledge – occurs within a social context. Consequently, listeners excel at inferring

social information and evoking social attitudes about speakers. This chapter has

shown how a listener-based approach links the social nature of linguistic experience

to the social basis of many linguistic changes in a straightforward, independently-

motivated fashion. In this way, it has built on the previous chapters to show that

viewing the listener as central to language change has potential to offer a unified

explanation of many different patterns in language change.



Chapter 5

Conclusions

This dissertation started from a big-picture question: what is the process through

which language changes? More precisely, how do many different influences – both

language-internal (e.g. word frequency) and language-external (e.g. social attitudes)

– fit together in the complex system of language change? Noting that individuals

participate in language change throughout the lifetime, I proposed that language

change emerges (at least in part) from the iteration of processes involved in every-

day linguistic interactions. In particular, I argued for the centrality of passive but

powerful perceptual biases in the listener, which may result from language-internal or

language-external factors. Through three core chapters, I have developed and applied

a framework for this listener-based approach, showing that it solves notable empirical

and theoretical puzzles.

In Chapter 2, I grounded the approach in a formal computational model of regular

sound change, in which perceptual biases mediate the updating of phoneme represen-

tations that listeners draw upon when they come to talk. This model paves the way

for testing causal hypotheses that use asymmetries observed in speech perception to

explain asymmetries observed in language change. It is also the first model of its

kind to successfully generate movement of phoneme categories in an acoustic space
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while maintaining their shapes and large degrees of overlap, as observed in empiri-

cal sound changes. It therefore constitutes a valuable contribution to the field, both

theoretically and practically.

In Chapter 3, I applied the model to the effects of word frequency on rates of

sound change. Only in recent years have empirical studies of such effects been possi-

ble, but they have already raised a major puzzle for linguistic theory, with different

effects of frequency observable in different kinds of sound change. I showed that the

listener-based model provides a solution to this puzzle: from a single perceptual bias,

which is supported by numerous psycholinguistic experiments, it generated the effects

seen in all existing empirical studies. This result underscores the strong theoretical

contribution that a listener-based approach can make to the study of language change.

It also makes an important contribution by vindicating usage-based approaches more

generally, which have been criticized in the literature under the mistaken assumption

that they always predict high-frequency words to change fastest.

Finally, in Chapter 4, I sketched an extension of the listener-based approach to lan-

guage change beyond sound change, under the influence of language-external factors.

I applied this extension to the adoption of the Māori-associated discourse tag eh by

young Pākehā, where it motivated the new analytical technique of zero-inflated nega-

tive binomial regression, a major practical contribution to the quantitative linguistics

toolbox. Using this technique, I solved an established puzzle in the literature by pro-

viding good evidence that Pākehā eh-adoption reflects change-in-progress rather than

age-grading. Furthermore, I showed that the listener-based approach explains why

the change is occurring only now, as social attitudes toward Māori have only recently

improved, bringing associated changes in experimentally-established perceptual bi-

ases. This finding contributes to (socio)linguistic theory by confirming that social

attitudes affect language change, and by highlighting the interrelated dynamicity of

attitudes and language.
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There are three big-picture theoretical takeaways from this dissertation. Firstly,

since an individual’s use of language changes throughout their lifetime, a primary

mechanism of language change concerns the cycle between language use and language

representations. Secondly, the listener plays an integral role in this cycle, and is

therefore central to language change. And thirdly, as a result of this centrality,

perceptual biases in the listener can explain patterns in language change; it is not

necessary to rely heavily on the speaker.

There are also three big-picture methodological takeaways from this dissertation.

Firstly, usage-based approaches to language change have typically focused heavily on

word frequency effects, but word frequency effects draw upon just one kind of per-

ceptual bias; many other kinds also exist, stemming from both language-internal and

language-external factors, and they remain a largely untapped potential. Secondly,

when testing hypotheses about the cause of language change, computational modeling

is an extremely useful tool; indeed, it is one of the few ways in which empirically-

observed language change can be ‘rerun’ under different conditions, giving rise to

controlled investigation. And thirdly, the combination of computational modeling

with corpus studies and experiments provides a cyclic approach to the study of lan-

guage change, with each method making predictions for, and testing predictions from,

the others.

By weaving together multiple methodologies, a listener-based approach allows us

to triangulate on answers to longstanding questions about language change. I have

begun to answer some of these questions in this dissertation, but many more remain

for future research, and many new questions exist as well. For example, to what

extent do empirical word frequency effects on rates of sound change match those

predicted by the typology in Chapter 3? Does the explanatory value of perceptual

biases remain when more of the complexity of language change is taken into account,

or when speaker-based but listener-oriented production biases are also considered?
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And how can a listener-based approach explain phenomena in language change other

than those described in this dissertation? Each of these questions provides a different

test for the listener-based approach.

One way in which future work may test the listener-based approach is through its

predictions. For example, it may address how well empirical word frequency effects on

rates of sound change match those predicted by the typology in Chapter 3. Since this

typology is probabilistic, testing it fully will require the accumulation of many corpus

studies. Some of these studies may assess the replicability of word frequency effects in

additional examples of the kinds of sound change that have already been analyzed in

the literature, such as the fronting of /a/ (a component of a push chain) and merger of

/E@/ with /i@/ in New Zealand English. Others may look for word frequency effects in

kinds of sound change that have not yet been analyzed with respect to rate of change,

such as the tense-lax /æ/ split in Philadelphia English. Studies of this latter sort will

be particularly valuable, as they test situations in which a listener-based approach

makes different predictions to an alternative approach that also draws heavily on the

speaker.

Another way in which future work may test the listener-based approach is by

assessing its robustness to complexity. In this dissertation, I have demonstrated the

explanatory value of perceptual biases for language change under many simplifying

assumptions, but it remains to be seen if this value holds for a more complex and

realistic picture of language change. For example, does the frequency-based per-

ceptual bias discussed in Chapter 3 still make viable predictions for kinds of sound

change that are not limited to interactions between at most two phoneme categories

along a single acoustic dimension, or that include a role for articulatory limitations?

Similarly, do the socially-based perceptual biases discussed in Chapter 4 accurately

predict observed social influences on language change, given the complexity of the

social world? Finally, does the explanatory value of perceptual biases remain when
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the speaker has access to biases that modulate their productions for the listener’s

benefit? Answering these questions will require revisions to the model from Chapter

2, but doing so will unlock much broader empirical predictions than are presently

available.

A final way in which future work may test the listener-based approach is by assess-

ing how readily it extends to phenomena in language change beyond the cases pre-

sented in this dissertation. One promising avenue for such extension is the Functional

Load Hypothesis (Martinet, 1952), which states that the probability of a phonologi-

cal distinction being lost over time is related to the amount of ‘work’ that distinction

does in preventing ambiguity between minimal pairs. The listener-based approach

provides a mechanism through which the Functional Load Hypothesis can operate,

by downweighting the influence of ambiguous tokens on the listener’s linguistic rep-

resentations (formally represented in the model of Chapter 2 by the discriminability

evaluation; see Appendix C). Crucially, this mechanism is the same as the one that

generated word frequency effects on rates of sound change in Chapter 3. Extending

the listener-based approach to account for new phenomena using the same mecha-

nisms will underscore its potential as a comprehensive theory of language change, and

will also offer a new perspective on how different phenomena in language change may

be related to each other.

Taking a listener-based approach to language change provides new perspectives

not just on language change, but also on the relationship between language change

and other areas. For example, it may lead future work both to draw new insights for

and from speech perception, and to revise assumptions about language evolution.

One way in which a listener-based approach to language change may offer new

insights is through bringing together speech perception and language change. Cre-

ating a close relationship between these two areas allows each to offer new insights
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and predictions for the other. For example, recent work in speech perception has sug-

gested that social stereotypes are recruited in the construction of linguistic memories,

somewhat independently of actual linguistic experience (Mengesha, Todd, & Sum-

ner, 2019). Under a listener-based approach to language change, this finding makes

the novel suggestion that language change may be constrained by social stereotypes.

Crucially, this suggestion is empirically testable, as it predicts that a linguistic vari-

able that is strongly associated with a social stereotype should resist being spread

across social groups moreso than a variable that is not associated with stereotypes.

In the other direction, from the existence of word frequency effects in sound change

that do not depend upon minimal pairs, the listener-based approach derives the ex-

istence of a corresponding bias on recognition that should apply even in the absence

of minimal pairs (Chapter 3). Such a bias is overlooked by most existing models

of speech perception, in which frequency effects serve to modulate the competition

in recognition between real words only. The existence of this bias is also testable,

through the prediction that the Ganong effect – the degree to which an acoustically

ambiguous token is biased toward being interpreted as a real word over a nonword

(Ganong, 1980) – should be sensitive to word frequency. By making connections

between speech perception and language change, the listener-based approach raises

new, testable predictions for the theory of each.

The listener-based approach to language change may also lead future work to

revise assumptions about language evolution, by analogy to language change. In

recent years, research programs have begun to systematically explore the factors that

may have influenced the way in which linguistic structure arose from pre-linguistic

communication signals. A tacit assumption underlying the computational (e.g. Nowak

& Krakauer, 1999) and experimental (e.g. Kirby et al., 2008) methods used to conduct

this exploration is that structure is imbued by the language learner. According to

this assumption, inductive biases cause a child’s communication system to deviate in
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systematic ways from that which they are exposed to by their parents, to better fit

with principles of cognitive organization. These biases are similar to those that have

previously been assumed to underlie language change, through repeated language

acquisition, and thus it has been proposed that the study of language change may

to some extent inform the study of language evolution (e.g. Kiparsky, 1976). If we

are to take this proposal seriously, then the notion that the listener plays a large

role in change implies that we might also expect the listener to play a large role in

evolution, opening exciting new methodological and theoretical possibilities for the

study of language evolution.

Taken together, this dissertation lays a solid foundation for a theory of language

change in which the listener is central. In proposing that the listener plays a large

role in the process of language change, it provides a system in which many influences

on language change fit together, from factors both language-internal (e.g. word fre-

quency) and language-external (e.g. social attitudes). It opens the door to new ways

of studying language change, drawing together methods and insights from speech

perception experiments, computational modeling, and diachronic corpus studies. By

fusing these insights in a cyclic listener-based approach, this dissertation provides a

way to continually triangulate on an ever-stronger theory of the complex system of

language change.



Appendix A

Model initialization details

The model in Chapter 2 is initialized by providing an initial exemplar cloud for

each category, i.e. a distribution of exemplars across a set of types. There are three

components to the initial exemplar cloud for each category:

• A set of types, whose frequencies follow a specified type-frequency distribution.

• A set of exemplars, whose acoustic values follow a specified acoustic distribution.

The total number of exemplars is equal to the sum of type frequencies for the

category.

• An assignment of exemplars to types, such that a given type of frequency f

has f exemplars, in accordance with the multiple-trace hypothesis (Hintzman

& Block, 1971).

I generated a distinct set of 92 types for each category, so that the system did not

include minimal pairs. I used the same type-frequency distribution for each category.

This distribution was based on the distribution of word log-frequencies in COCA:

The Corpus of Contemporary American English (Davies, 2008–) (see Figure A.1).
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Figure A.1: Frequency in a corpus and in the model. (A) The distribution of word frequencies
in COCA (Davies, 2008–). Panels show the number of unique words (left) and the sum of word
log-frequencies (middle) in each word log-frequency bin, and the sum of word log-frequencies in each
of four word frequency classes (right), from low-frequency (bins 1–3; lightest gray) to high-frequency
(bins 10–12; darkest gray). I calculated log-frequencies using the natural logarithm and binned them
by rounding up, then excluded words occurring extremely infrequently (log-frequency 0) or extremely
frequently (log-frequency > 12). (B) I modeled the distribution of type frequencies in the simulations
on the distribution observed in COCA, equating words with types, and type frequency (and thus
number of exemplars per type, following the multiple-trace hypothesis (Hintzman & Block, 1971))
with word log-frequency. This yielded notable symmetry across frequency classes (right panel): there
are as many exemplars of low-frequency types as there are of high-frequency types.
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As a consequence of using corpus log-frequencies, I obtained the same number of

exemplars of high-frequency types (with few types and many exemplars per type)

as exemplars of low-frequency types (with many types and few exemplars per type).

This means that, in the simulations presented here, the set of exemplars of all high-

frequency types and the set of exemplars of all low-frequency types are both updated

at the same rate;51 any observed effects of type frequency are thus based on differences

in the way that types are processed, not on differences in sheer quantity of exemplars.

For each category, I generated a set of 492 exemplars with acoustic values follow-

ing a raised-cosine distribution. I used a raised-cosine distribution because its short

tails are less susceptible to iterated sampling error than the long tails of a normal

distribution, and thus are more robust to the effects of discriminability and typicality

evaluation. I sampled from this distribution in such a way that the sample of ex-

emplars of high-frequency types was identical to the sample of low-frequency types

(and similarly for mid-high- and mid-low-frequency types). This sampling strategy

means that there is no frequency asymmetry in the initial conditions of the model;

any observed effects of type frequency over time are thus based on differences in the

way that types are processed, not on differences in initial conditions. Finally, I as-

signed identical (but displaced) initial exemplar sets to each category, to ensure that

any observed differences between categories are due to category interaction and not

initial conditions.

The process I used to sample the initial exemplar sets was as follows. First, I drew

246 values from the raised cosine distribution whose probability density function is

51In a given period of time, a given high-frequency type is produced and perceived more than
a given low-frequency type, but high-frequency types in aggregate are produced and perceived the
same number of times as low-frequency types in aggregate, since there are many fewer high-frequency
types than low-frequency types (Zipf, 1935).
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Table A.1: Initial exemplar distribution statistics for type frequency classes.

Freq. N Mean SD Skew Ex. Kurtosis

(All) 492 −0.013 0.998 0.109 −0.717
HF 53 −0.009 0.999 0.097 −0.770
MHF 193 −0.013 0.998 0.112 −0.702
MLF 193 −0.013 0.998 0.112 −0.702
LF 53 −0.009 0.999 0.097 −0.770

given in Equation (A.1) and rounded them to the nearest 0.1.

r(v) =


c

2
(1 + cos (cπv)) if v ∈

[
−1

c
,
1

c

]
0 otherwise

(A.1)

where

c =

√
1

3
− 2

π2
(A.2)

I re-drew values until I obtained a sample with mean approximately equal to zero,

standard deviation approximately equal to 1, and low skewness. I then split this

sample into two subsets of 53 and 193, ensuring that the statistics for each subset

were approximately equal to the statistics across the entire sample. I made two copies

of each subset and designated them to classes of types on the basis of type frequency;

I designated a copy of the first subset (with 53 exemplars) for each of the high- and

low-frequency classes, and a copy of the second subset (with 193 exemplars) for each

of the mid-high- and mid-low-frequency classes. The statistics for the sample and

frequency-class subsets are given in Table A.1.

I used this distribution of acoustic values as the basis of all simulations with the

model, adjusting it as required by the parameters of the simulation. To create initial

categories of width σ, I scaled the acoustic value of every exemplar by σ. To create an

initial category distance of µ between the categories, I subtracted µ from the (scaled)
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acoustic value of each of the exemplars in the Pusher. Following any adjustments, I

re-rounded the acoustic values to the nearest 0.1.

In each run of the model, I assigned the exemplars for a given frequency class to

types in that frequency class at random, ensuring that a given type of frequency f

had f exemplars. This random assignment means that the results of many runs of the

model with a given set of parameter values reflect the dynamics expected on average

under that set of parameter values, independent of the effects of initial allocation of

exemplars to types.



Appendix B

Model tuning details

The model tuning process described in Chapter 2 (Section 2.4.2) required pre-determining

values for a number of parameters and exploring a range of values for other parame-

ters. In this appendix, I describe the parameter values involved in the tuning process,

as well as the category-level properties that resulted from successful tuning.

B.1 Parameter values

For both phonetic drift and push chains, I pre-determined three values for σ: σ =

0.6 (narrow categories), σ = 0.8 (medium-width categories), and σ = 1.0 (wide

categories). In each case, I set α = σ/2: for σ = 0.6, I set α = 0.3; for σ = 0.8, I set

α = 0.4; and for σ = 1.0, I set α = 0.5.

For phonetic drift, I also pre-determined three values for β: β = 0.05 (weak bias),

β = 0.15 (medium-strength bias), and β = 0.25 (strong bias). I then explored 10

values for each of τ and ι. The values of τ ranged from 0.02 to 0.20 in steps of 0.02,

representing a requirement for the activation incited by a token to be 2–20% of the

maximum possible in order to be stored with probability 0.5. The values of ι ranged

from 0.1 to 1.0 in steps of 0.1, representing a degree of imprecision that could shift
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the target by up to 6–100% of the span of a category in either direction (depending

also on the width of the category, σ).

For push chains, in addition to the previously-described pre-determination of σ

and α, I pre-determined two values for µ for each value of σ. For σ = 0.6, I set

µ ∈ {2.1, 1.9}; for σ = 0.8, I set µ ∈ {3.0, 2.8}; and for σ = 1.0, I set µ ∈ {3.9, 3.7}. I

also pre-determined three values for δ: δ = 0.25 (weak discriminability force), δ = 0.50

(medium-strength discriminability force), and δ = 0.75 (strong discriminability force).

I retained the value of τ selected by tuning for phonetic drift and explored 4 values for

ι for each value of σ, which yielded between 0–50% increase in category width during

phonetic drift. For σ = 0.6, I chose ι ∈ {0.4, 0.5, 0.6, 0.7}; for σ = 0.8, I chose ι ∈

{0.5, 0.6, 0.7, 0.8}; and for σ = 1.0, I chose ι ∈ {0.6, 0.7, 0.8, 0.9}. Finally, I explored

25 values for β, which ranged from 0.01 to 0.25 in steps of 0.01 and represented a

consistent bias approximately equal to 0.2–8.5% of the span of a category (depending

also on the width of the category, σ).

B.2 Results

The parameter values chosen by the tuning process for phonetic drift are summarized

in Table B.1, together with the category-level properties they gave rise to (compare

to the initial category properties in Table A.1).

The parameter values chosen by the tuning process for push chains are summarized

in Table B.2, and the category-level properties they gave rise to are summarized in

Table B.3 (compare to the initial category properties in Table A.1).



APPENDIX B. MODEL TUNING DETAILS 173

Table B.1: Phonetic drift tuning results. Tuned parameter values and average category properties
for a single category after 5000 iterations. Displacement measures the distance traveled by the
category centroid.

Parameters Category properties

σ β ι α τ Displacement Width Skew Ex. Kurtosis

0.6 0.05 0.3 0.3 0.10 0.35 0.59 −0.12 −0.48
0.8 0.05 0.4 0.4 0.10 0.35 0.79 −0.09 −0.46
1.0 0.05 0.5 0.5 0.10 0.32 0.97 −0.07 −0.49
0.6 0.15 0.3 0.3 0.10 1.03 0.61 −0.33 −0.20
0.8 0.15 0.4 0.4 0.10 1.06 0.79 −0.23 −0.34
1.0 0.15 0.5 0.5 0.10 1.04 0.99 −0.21 −0.37
0.6 0.25 0.3 0.3 0.10 1.68 0.64 −0.47 −0.21
0.8 0.25 0.4 0.4 0.10 1.69 0.83 −0.35 −0.08
1.0 0.25 0.5 0.5 0.10 1.72 1.01 −0.28 −0.26

Table B.2: Tuned parameter values for push chains.

Set σ µ β ι α δ τ

(1) 0.6 2.1 0.08 0.5 0.3 0.25 0.10
(2) 0.6 1.9 0.10 0.5 0.3 0.25 0.10
(3) 0.8 3.0 0.06 0.6 0.4 0.25 0.10
(4) 0.8 2.8 0.08 0.6 0.4 0.25 0.10
(5) 1.0 3.9 0.05 0.7 0.5 0.25 0.10
(6) 1.0 3.7 0.07 0.7 0.5 0.25 0.10
(7) 0.6 2.1 0.12 0.5 0.3 0.50 0.10
(8) 0.6 1.9 0.16 0.5 0.3 0.50 0.10
(9) 0.8 3.0 0.08 0.6 0.4 0.50 0.10
(10) 0.8 2.8 0.12 0.6 0.4 0.50 0.10
(11) 1.0 3.9 0.12 0.8 0.5 0.50 0.10
(12) 1.0 3.7 0.15 0.8 0.5 0.50 0.10
(13) 0.6 2.1 0.20 0.6 0.3 0.75 0.10
(14) 0.6 1.9 0.25 0.6 0.3 0.75 0.10
(15) 0.8 3.0 0.16 0.7 0.4 0.75 0.10
(16) 0.8 2.8 0.21 0.7 0.4 0.75 0.10
(17) 1.0 3.9 0.14 0.8 0.5 0.75 0.10
(18) 1.0 3.7 0.19 0.8 0.5 0.75 0.10
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Table B.3: Push chain tuning results. Average properties of the interactions obtained under the sets
of parameter values in Table B.2 after 5000 iterations. Overlap measures the span of the overlapping
region between categories (i.e. the distance between the most advanced Pusher exemplar and the
least advanced Pushee exemplar). Pushee displacement measures the distance traveled by the Pushee
centroid (i.e. the size of the push).

Pushee Pusher

Set Category dist. Overlap Displacement Width Skew Ex. Kurtosis Width Skew Ex. Kurtosis

(1) 2.09 0.80 0.08 0.62 0.12 −0.56 0.61 −0.17 −0.54
(2) 1.91 0.96 0.11 0.61 0.11 −0.54 0.60 −0.18 −0.52
(3) 3.01 0.85 0.07 0.81 0.10 −0.57 0.81 −0.12 −0.56
(4) 2.81 1.00 0.10 0.80 0.11 −0.55 0.80 −0.15 −0.55
(5) 3.91 0.88 0.05 1.01 0.10 −0.57 1.00 −0.09 −0.57
(6) 3.69 1.03 0.07 1.00 0.11 −0.57 0.99 −0.12 −0.56
(7) 2.08 0.68 0.12 0.60 0.15 −0.55 0.58 −0.23 −0.50
(8) 1.90 0.83 0.17 0.59 0.14 −0.53 0.57 −0.26 −0.45
(9) 3.02 0.67 0.11 0.80 0.13 −0.57 0.79 −0.17 −0.56
(10) 2.80 0.82 0.14 0.78 0.14 −0.55 0.77 −0.21 −0.51
(11) 3.87 0.80 0.11 1.02 0.14 −0.57 1.00 −0.18 −0.55
(12) 3.68 0.95 0.15 1.01 0.14 −0.57 0.99 −0.21 −0.53
(13) 2.10 0.67 0.18 0.62 0.17 −0.54 0.59 −0.30 −0.45
(14) 1.94 0.83 0.23 0.61 0.15 −0.51 0.57 −0.32 −0.39
(15) 2.99 0.68 0.17 0.81 0.16 −0.55 0.79 −0.25 −0.50
(16) 2.79 0.83 0.21 0.80 0.16 −0.54 0.77 −0.28 −0.46
(17) 3.89 0.67 0.14 1.00 0.14 −0.58 0.99 −0.21 −0.54
(18) 3.67 0.81 0.19 0.99 0.15 −0.57 0.96 −0.25 −0.50



Appendix C

Minimal pairs in the model

The simulations presented in Chapters 2 and 3 do not include minimal pairs, under

the claim that minimal pairs alone are unlikely to drive the effects that I am concerned

with modeling. In this appendix, I present evidence to support this claim.

The claim that minimal pairs alone are unlikely to drive regular sound change

takes empirical support from the interaction of /æ/ and /E/ in the New Zealand

short front vowel shift. In the ONZE corpus (Gordon et al., 2007), only 8.2% of

words containing /æ/ or /E/ (164 of 2,000 unique wordforms) have a relevant non-

proper-noun minimal partner that also appears in the corpus. These minimal pairs

are distributed across the frequency range and account for 21.1% of the total tokens

(11,620 of 55,200) analyzed by Hay et al. (2015). Since the vast majority of the New

Zealand English /æ/-/E/ data (words and tokens) correspond to words without a

relevant minimal partner,52 the properties of the vowel interaction are likely to be

general, holding across words both with and without relevant minimal partners.

The claim that minimal pairs are unnecessary in the model can be supported by

52The number of words in the dataset with potential relevant non-proper-noun minimal partners
(as assessed by the Unisyn lexicon (Fitt, 2000)) that happened not to be mentioned (e.g. through not
being of the appropriate register or through being extremely low-frequency) is capped at 15.4% (308),
accounting for no more than 37.1% (20,501) of the tokens. Even in this more extreme interpretation
of the data, minimal pairs are in a minority.
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comparing the results of simulations with and without minimal pairs. The claim can

be broken into two sub-claims: firstly, that minimal pairs do not make necessary

contributions to any part of modeling empirically-observed category movements and

frequency effects; and secondly, that minimal pairs alone are not sufficient to generate

these movements and effects. In the following sections, I present an extension of the

model to include minimal pairs, and I use it to derive support for each of these

sub-claims.

C.1 Modeling minimal pairs

There are two options for introducing minimal pairs into the model, differentiated

based on the assumed influence of higher-level (syntactic, semantic, pragmatic, or

discourse) context. Under the first, context-sensitive option, higher-level context has

a large influence: it uniquely determines the intended type even when the phonological

frame is consistent with multiple types. The listener operates as in the present model,

storing the token as an exemplar of the intended type if it passes the discriminability

and typicality evaluations, and discarding it otherwise. Consequently, there is no

potential for variant trading (Blevins & Wedel, 2009), where the listener mistakenly

stores a token of one type as an exemplar of another type. Under the second, context-

insensitive option, higher-level context has no influence: when the phonological frame

is consistent with multiple types, the context can never uniquely determine which

type was intended. The listener considers all possible types that are consistent with

the phonological frame, including those corresponding to nonwords, and chooses one

probabilistically based on category activation and type frequency. The token is stored

as an exemplar of the winning type if it passes the typicality evaluation and if the

type corresponds to a real word; thus, variant trading is possible.
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Within the framework of the model, the context-sensitive option is more conserva-

tive because it does not permit variant trading; in every other respect, the two options

are mathematically equivalent. Without variant trading, all that introducing minimal

pairs does is effectively raise the discriminability threshold. Recall that the threshold

was stated to be low (δ < 1) due to the existence of lexical bias (Ganong, 1980) to-

ward the intended type, making it relatively easy to map an acoustically ambiguous

token to the intended type. With the introduction of minimal pairs, the unintended

type can also have such a lexical bias, introducing another plausible identity for an

acoustically ambiguous token, and thus making it harder to map such a token to

the intended type. As shown mathematically in Equation (C.4), this counterveiling

pressure effectively raises δ. Since I have already explored the role of different dis-

criminability thresholds in the main text without invoking minimal pairs, introducing

minimal pairs under the context-sensitive option would not yield any new insight. For

this reason, I chose to introduce minimal pairs under the context-insensitive option,

allowing me to explore anew the influence of variant trading on the model’s results.

The introduction of context-insensitive minimal pairs embraces a view of the dis-

criminability evaluation as a probabilistic recognition process involving competition

between the types (from different categories) that are consistent with a given frame.

I assume that a token is identified as belonging to the category that wins the dis-

criminability evaluation, and that the discriminability evaluation fails just in case

this identification yields a nonword. More precisely, the discriminability evaluation

(repeated in Equation (C.1)) is replaced with a process of recognition of the token

(Equation (C.2)), where a δ value is computed as before for each category according

to the corresponding type frequency (Equation (C.3)). The token is passed to the

typicality evaluation if and only if it has been recognized as corresponding to a real

word.

P (pass discriminability evaluation|Ai, Ao) =
1
δ
· Ai

1
δ
· Ai + 1 · Ao

(C.1)
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P (token recognized as Tk) =
1
δk
· Ak∑

k
1
δk
· Ak

(C.2)

δk =


[
λ+

(
2(fk−1)
M−1 − 1

)
φ
]1
0

Tk corresponds to a real word

1 Tk corresponds to a nonword

(C.3)

When two competing types both correspond to real words, the recognition equa-

tion can be explicitly written out as follows:

P (token recognized as Ti) =
1
δi
· Ai

1
δi
· Ai + 1

δo
· Ao

(C.4)

=
δo
δi
· Ai

δo
δi
· Ai + 1 · Ao

(C.5)

=

1
δi/δo
· Ai

1
δi/δo
· Ai + 1 · Ao

(C.6)

It can be seen that this form is equivalent to Equation (C.1), with δ = δi/δo. Since

δo < 1, it follows that this new version of δ is increased from the original value of δi

it would take were there no real word competitor, and hence that the introduction of

minimal pairs effectively raises the discriminability threshold.

C.2 Minimal pairs are not necessary: simulations

with a subset of minimal pairs

Given the extension of the model to include minimal pairs, I begin by questioning

whether minimal pairs are necessary for generating any desirable pattern in simula-

tions of push chains. I compare simulations with and without minimal pairs to see

whether the addition of minimal pairs makes new results possible or existing results

impossible.
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In each model run, I randomly changed 10% of the types to participate in min-

imal pairs, as an approximation to the proportion of minimal pairs in the /æ/–/E/

interaction in New Zealand English. To accomplish this, I randomly chose 10 types

from each category for each run and created minimal pair relations between them.

This random pairing process ensured that there would be no confound between type

frequency and minimal pair existence in the results.

The addition of minimal pairs allows categories to stably exist in closer proximity

to one another, since tokens that would otherwise fail the discriminability evaluation

instead participate in variant trading. To ensure that this decreased stable distance

between categories did not disrupt the interpretation of the simulation results, I

retuned the initial category distance (µ) using frequency-insensitive discriminability

thresholds (δ). Keeping all other parameters as in Table B.2, I obtained the following:

for σ = 0.6, I set µ ∈ {1.8, 2.0}; for σ = 0.8, I set µ ∈ {2.6, 2.8}; and for σ = 1.0, I

set µ ∈ {3.4, 3.6}.

For each of the parameter settings in Table B.2 (with µ retuned as above), I

ran 1000 simulations with 10% minimal pairs for 5000 iterations each. The average

properties obtained from these simulations are given in Table C.1. As can be seen,

the properties obtained with 10% minimal pairs (Table C.1) are highly similar to

those obtained without minimal pairs (Table B.3), indicating that the same kinds of

stable category interactions are generated with and without minimal pairs.

It is possible that the similarities between the simulations with and without min-

imal pairs hold only at the coarse-grained category level and not at the fine-grained

type level. To assess this possibility, I repeated the investigation of frequency effects

from Chapter 3 with the inclusion of 10% minimal pairs. Using the 15 δ functions

from Chapter 3 and the 18 sets of parameter values with retuned µ, I ran the model

1000 times for 5000 iterations each. In Figure C.1, I compare frequency effects in the

Pushee for models with and without minimal pairs for parameter sets (4), (10), and
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Table C.1: Properties of push chains with 10% minimal pairs. Average properties of the categories
in models with 10% minimal pairs under the sets of parameter values in Table B.2 (with µ retuned)
after 5000 iterations. Overlap measures the span of the overlapping region between categories (i.e.
the distance between the most advanced Pusher exemplar and the least advanced Pushee exemplar).
Pushee displacement measures the distance traveled by the Pushee centroid (i.e. the size of the push).

Pushee Pusher

Set µ Category dist. Overlap Displacement Width Skew Ex. Kurtosis Width Skew Ex. Kurtosis

(1) 2.0 1.99 0.89 0.08 0.62 0.12 −0.55 0.61 −0.18 −0.53
(2) 1.8 1.80 1.07 0.11 0.61 0.12 −0.53 0.59 −0.19 −0.49
(3) 2.8 2.82 1.02 0.07 0.81 0.11 −0.56 0.80 −0.14 −0.56
(4) 2.6 2.62 1.16 0.09 0.80 0.12 −0.55 0.79 −0.16 −0.53
(5) 3.6 3.63 1.12 0.06 1.00 0.11 −0.57 1.00 −0.11 −0.57
(6) 3.4 3.42 1.28 0.08 0.99 0.12 −0.56 0.98 −0.13 −0.55
(7) 2.0 1.99 0.77 0.12 0.60 0.15 −0.54 0.58 −0.25 −0.49
(8) 1.8 1.80 0.94 0.16 0.59 0.13 −0.52 0.57 −0.27 −0.42
(9) 2.8 2.85 0.85 0.11 0.79 0.14 −0.56 0.78 −0.18 −0.54
(10) 2.6 2.64 1.01 0.15 0.78 0.14 −0.54 0.76 −0.22 −0.50
(11) 3.6 3.62 1.04 0.13 1.01 0.14 −0.56 0.99 −0.19 −0.54
(12) 3.4 3.43 1.18 0.17 0.99 0.14 −0.55 0.97 −0.22 −0.52
(13) 2.0 2.01 0.77 0.18 0.61 0.17 −0.54 0.59 −0.31 −0.43
(14) 1.8 1.85 0.94 0.23 0.60 0.15 −0.49 0.57 −0.32 −0.37
(15) 2.8 2.83 0.85 0.17 0.81 0.16 −0.56 0.78 −0.26 −0.49
(16) 2.6 2.63 1.01 0.22 0.79 0.16 −0.52 0.76 −0.28 −0.45
(17) 3.6 3.64 0.94 0.16 1.00 0.15 −0.56 0.97 −0.22 −0.52
(18) 3.4 3.43 1.10 0.22 0.98 0.15 −0.55 0.95 −0.25 −0.48

(16) (with µ retuned as above).

The models with minimal pairs show the same broad patterns in frequency effects

as the models without minimal pairs: when high-frequency types are sufficiently per-

ceptually advantaged relative to low-frequency types (with respect to discriminability,

δ), they become more likely to cluster in the overlapping region between categories,

allowing low-frequency types in the Pushee to change at a faster rate. Wherever a

robust frequency effect of this sort exists in the model without minimal pairs, it also

exists in the model with minimal pairs.

However, the addition of minimal pairs also exacerbates the existence of reversed

frequency effects for some δ functions (lower-left panels of Figure C.1), where high-

frequency types in the Pushee change at a faster rate than low-frequency types. As
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Increasing discriminability of HF types relative to LF types

Figure C.1: Frequency effects with and without minimal pairs. Results of varying discriminability
threshold (δ) with type frequency for 3 different sets of parameter values (1 per row), comparing a
system with 10% minimal pairs (solid lines) to a system with no minimal pairs (dotted lines). The
figure is laid out in the same way as Figure 3.1. The system with minimal pairs shows the same
patterns as the system without minimal pairs, with increasing discriminability of high-frequency
types relative to low-frequency types (movement from left to right across columns) causing slower
change of high-frequency types than of low-frequency types in the Pushee (negative-sloping sections).
However, it also shows reversed effects when there is little or no difference in discriminability between
high- and low-frequency types (left columns), unlike the system without minimal pairs.
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discussed in Section 3.4.2, these reversed frequency effects are the result of an inter-

action between my assumptions about production and storage, which causes high-

frequency types to be more sensitive to perceptual forces than low-frequency types.

Because the addition of minimal pairs allows for categories to stably exist closer to one

another, it increases the discriminability force.53 High-frequency types are more sen-

sitive to this increased discriminability force, causing them to be pushed apart moreso

than low-frequency types in the absence of a countervailing perceptual asymmetry.

I consider the size of the reversed frequency effect not to qualify as a meaningful

difference between the models with and without minimal pairs, since the effect is

an artifact of the simplified assumptions about production and storage, and since

it only occurs in situations where an empirically-supported perceptual asymmetry is

not present.

The addition of minimal pairs thus does not meaningfully affect the model’s re-

sults. Models both with and without minimal pairs are equally capable of generating

push chains displaying key empirically-observed properties, such as the maintenance

of category width and overlap. Furthermore, given sufficiently strong perceptual

asymmetries, models both with and without minimal pairs generate word-frequency

effects of the kind observed in documented sound changes. I conclude that minimal

pairs are not necessary for generating any desirable pattern in simulations of push

chains.

53To see why decreased category distance results in increased discriminability force, consider a
token at the edge of the intended category, in the overlapping region. The discriminability force is a
function of the number of exemplars of the other category contained within the activation window
around this token; more exemplars from the other category provide more competition during the
discriminability evaluation, yielding a larger discriminability force. The closer the categories are,
the closer the edge of the intended category will be to the centroid of the other category, and thus
the more exemplars from the other category there will be in the activation window.
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C.3 Minimal pairs are not sufficient: simulations

with only minimal pairs competing

Given that the model’s key results can be obtained both with and without minimal

pairs, I next ask whether they can be obtained if minimal pairs alone underpin push

chains. I conduct simulations varying the degree to which types with and without

minimal partners contribute to category interaction, to see whether minimal pairs

alone are sufficient for generating desirable category movements and frequency effects.

Since the model assumes that the phonological frame is perfectly perceived, it

assumes that recognition of a type involves competition only between types with the

same phonological frame, i.e. between two real words in a minimal pair or between

a real word and a nonword. Given this assumption, to say that minimal pairs alone

underpin category interaction is to say that types corresponding to nonwords do

not compete with types corresponding to real words for recognition. This lack of

nonword type competition is a tacit assumption in existing models of spoken word

understanding (e.g. Norris & McQueen, 2008).54 In the model presented in the main

text, I assume that nonword types compete to the degree that would be expected

based on their category activation alone, by setting the default value of δ for nonwords

to 1. Here, I relax this assumption by increasing the default value of δ; the larger the

value, the less nonword types compete, and thus the more minimal pairs carry the

burden of category interaction.

To control the extent to which nonword types compete with real words during the

recognition process, I introduce a new parameter, χ. χ is a scale factor that multiplies

54Models of spoken word understanding typically assume that competition is between real words
that may be phonological neighbors without being minimal pairs in regards to the segment in
question (vowel); for example, bat competes not just with bet, but also with words like pat and
back. This assumption is a consequence of the phonological frame not being perfectly perceived, and
would also follow in the present model if it allowed imperfect frame perception. However, extending
the model in this way is beyond the scope of the present work, and it is not clear that it would
systematically contribute to the interaction between vowel categories.
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the activation of a category for the purpose of recognition when the corresponding

type is a nonword, just as 1
δ

multiplies the activation when the corresponding type

is a real word (Equation (C.7)). In this way, 1
χ

corresponds to the default δ value

assigned to nonword types. χ can be interpreted as (proportional to) the response

bias toward a category yielding a nonword type.

δk =


[
λ+

(
2(fk−1)
M−1 − 1

)
φ
]1
0

Tk corresponds to a real word

1
χ

Tk corresponds to a nonword

(C.7)

When the unintended (‘other’) type corresponds to a nonword, the formula un-

derlying recognition as the intended type (Equation (C.2) can be written out as:

P (token recognized as Ti|To corresponds to a nonword) =
1
δi
· Ai

1
δi
· Ai + χ · Ao

(C.8)

When χ = 0, the right-hand side of Equation (C.8) becomes 1, meaning that

every type that is not in a minimal pair relation is automatically correctly recognized

(because there is only one real word compatible with the perfectly-perceived phono-

logical frame). In other words, nonword types do not compete for recognition. When

χ = 1, the recognition process reverts to that explored in the previous section, in

which nonword types compete for recognition to the same extent as in the main text,

but trigger failure when they win. For intermediate values of χ, nonword types have

intermediate degrees of influence on the recognition process.

Note that Equation (C.7) is equivalent to Equation (C.9), where δ′k = δkχ. Conse-

quently, introducing the parameter χ is equivalent to multiplying both λ and φ by a

scale factor. In other words, reducing the extent to which nonword types compete with

real word types for recognition is equivalent to increasing the average discriminability

of types (lowering the discriminability threshold) and decreasing the discriminability
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Table C.2: Properties of push chains with varying nonword competition. Average values and %
changes for properties of interactions after 50000 iterations, for models with 10% minimal pairs
where nonword types compete during recognition to various degrees (represented by χ). The models
use parameter set in Table B.2, retuned to have µ = 2.6, and have no bias (β = 0). Pushee frequency
effect measures the distance between the centroid of the sub-distribution of high-frequency Pushee
types and the centroid of the sub-distribution of low-frequency Pushee types.

Pushee

χ Category distance Category overlap Width Skew Ex. Kurtosis Freq. Effect

0 2.45 (−05.8% ) 2.26 (+125.8% ) 0.90 (+11.3% ) 0.02 (−79.9% ) −0.49 (+34.2% ) −0.00
0.1 2.97 (+14.3% ) 1.36 (+036.2% ) 0.87 (+07.8% ) 0.07 (−15.5% ) −0.53 (+28.1% ) −0.03
0.25 3.26 (+25.3% ) 0.95 (−005.2% ) 0.86 (+06.6% ) 0.07 (−05.8% ) −0.55 (+25.4% ) −0.03
0.5 3.47 (+33.5% ) 0.65 (−034.6% ) 0.86 (+06.3% ) 0.09 (+13.5% ) −0.57 (+23.7% ) −0.03
0.75 3.60 (+38.3% ) 0.50 (−049.8% ) 0.86 (+05.9% ) 0.09 (+16.0% ) −0.57 (+23.6% ) −0.05
1 3.69 (+42.1% ) 0.40 (−059.7% ) 0.86 (+05.8% ) 0.09 (+16.1% ) −0.56 (+24.1% ) −0.04

of high-frequency types relative to low-frequency types.

δ′k =


[
λχ+

(
2(fk−1)
M−1 − 1

)
φχ
]1
0

Tk corresponds to a real word

1 Tk corresponds to a nonword

(C.9)

To test how χ affects category interaction and type frequency effects, I conducted

simulations. These simulations involved 10% minimal pairs, as in Section C.2, and

used parameter setting (10) from Section C.2, with a value of 0.5 for φ. To ensure that

I could focus just on category interaction, independent of external effects, I removed

Pusher bias by setting β = 0. I explored 6 values for χ: 0, 0.1, 0.25, 0.5, 0.75, and 1.

For each value of χ, I ran 1000 models for 50000 iterations each. I present a summary

of the rest of the average results after 50000 iterations in Table C.2. As can be seen,

category shape (width, skewness, and excess kurtosis) is approximately maintained

for all values of χ, but increases of category distance and Pushee frequency effects are

only obtained for χ > 0. I present a summary of how category distance and Pushee

frequency effects change over time in Figure C.2.

It is clear from Table C.2 and Figure C.2 that having an extremely large default

value of δ – corresponding to no recognition competition from nonword types – is
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Figure C.2: Frequency effects with varying nonword competition. Results of simulations involving
two categories with no bias, where the default value of δ for nonword types is increased to represent
less nonword type competition in recognition, from the standard value of 1 (lightest; expected
competition) to the largest value possible (darkest; no competition). Left: the distance between
the categories grows in all cases except when there is no nonword type competition. Right: high-
frequency types change slower than low-frequency types in all cases except when there is no nonword
type competition.

not appropriate, for two main reasons. Firstly, the categories drift closer together

over time to greatly increase overlap, in spite of the expectation that they should

be mutually repellent. Secondly, types of all frequencies change at the same rate

in the Pushee, in spite of the expectation that perceptual asymmetries should allow

low-frequency types to change faster (as in the previous versions of the model). Both

of these results follow from the fact that, when nonword types do not compete for

recognition, an intended type without a minimal partner is automatically recognized

regardless of its frequency, because it is the only real word type that is compatible

with the perfectly-perceived phonological frame. Thus, there is no discriminability

force for the 90% of types without minimal partners, meaning that there is insufficient

force to keep the categories apart, and there is insufficient potential for perceptual

asymmetries to be leveraged in the generation of frequency effects.

Conversely, any default δ that is not extremely large – i.e. any non-zero degree of

competition from nonword types – is sufficient to generate mutual category repulsion

and frequency effects. While smaller default δ (more nonword type competition)

causes greater increase in category distance, it has little impact on category shape, nor
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on the degree to which low-frequency types change faster than high-frequency types

in the Pushee. Consequently, the model reported in the main text – where nonword

types compete fully, i.e. as would be expected based on the category activations they

incite – yields a qualitative pattern of results that is expected to hold even if the

degree of nonword type competition is reduced.

In summary, the model’s key results cannot be obtained if minimal pairs alone

underpin category interaction (at least, assuming that only a minority of types are in

relevant minimal pair relations, as indicated by New Zealand English corpus data).

The burden for driving push chains must be extended to types without minimal

partners, so that phonotactically plausible nonword types compete for recognition

(even to a small degree). Since it is types without minimal partners that are crucial

to the model’s key results, I conclude that the decision to leave out minimal pairs

from the model in the paper had no qualitative effect on the main results.



Appendix D

Exemplar overwriting and decay

The model constructed in Chapter ?? assumes that a stored exemplar overwrites

another, and thus that all exemplars have a fixed strength that does not decay over

time. This treatment is different to the standard one in exemplar dynamics models, in

which there is no overwriting, but exemplar strength decays exponentially over time

(Ettlinger, 2007; Pierrehumbert, 2001; Tupper, 2015; Wedel, 2006, 2012; Wedel &

Fatkullin, 2017). In this appendix, I show that the difference is superficial; averaged

over many runs, the expected behavior of an overwriting model such as the present

one is equivalent to that of a special case of a decay model.

For both the overwriting and the decay models, I consider a type with frequency

f in a system where the total combined frequency of all types (i.e. total number of

exemplars, in the overwriting model) is N . The mathematical analysis assumes that

f represents subjective type frequency, but it is not sensitive to the way in which

these subjective frequencies are obtained from objective values (though the caveats

required for the analysis to hold are sensitive to extreme differences in frequencies).

I focus on a single exemplar of this type that was stored at time 0, and I consider its

contribution to the behavior of the system at time t (i.e. after t production-storage

iterations). For simplicity, I assume that every token is stored; allowing some tokens

188
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not to be stored simply slows down the rate of evolution. For the decay model, I

assume that the strength of each exemplar is scaled by a factor of k < 1 with each

iteration. As in the simulations presented in the main text, I also assume that both

models consist of a single agent talking to themself, so that the sources of storage

and production are identical; the derivations as stated do not apply to situations with

multiple interacting agents.

The mathematical derivations presented here assume that there are multiple types

in the system, but they make no assumptions about the allocation of those types to

categories. The results can be understood to apply equally well to a case with a single

category (and multiple types in that category) or to a case with multiple categories

(and at least one type per category). Because I assume there are multiple types, the

decay-based model I consider is not the same as the one presented by Pierrehumbert

(2001), which observed apparent frequency effects using a single type in a single

category. In Section D.4, I develop a full comparison with the actual model presented

by Pierrehumbert (2001), through which I demonstrate why the apparent frequency

effects observed from that model do not hold of exemplar-based models in general.

D.1 Equivalence of memory treatments

I first show that the overwriting and decay models have equivalent treatments of

memory. For this purpose, I compare the probability that an exemplar remains after

t iterations in the overwriting model with the strength of an exemplar after t iterations

in the decay model.

D.1.1 Overwriting model

In the overwriting model, an exemplar stored at time 0 will remain at time t provided

that any subsequent tokens of the same type do not overwrite it.
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The probability of producing a token of the given type on any iteration is f/N .

Given a token of that type, the probability of overwriting the given exemplar with it

is 1/f . Thus, the probability of overwriting the given exemplar on any iteration is

1/N , so the probability of not overwriting it on any iteration is 1− (1/N).

For the exemplar still to be present after t iterations, it must not have been

overwritten on each iteration. Since each iteration is independent, the probability of

this is

P (exemplar remains at time t) =

(
1− 1

N

)t
(D.1)

which is exponentially decreasing with t at a rate given by 1− 1/N .

D.1.2 Decay model

In the decay model, an exemplar is stored at time 0 with strength 1, and this strength

decays exponentially.

On each iteration, the strength of the exemplar is multiplied by k < 1. Thus, the

strength of the exemplar at time t is

Sx(t) = kt (D.2)

D.1.3 Model comparison

As can be seen, the probability of an exemplar remaining after t iterations in the over-

writing model (Equation (D.1)) and the strength of an exemplar after t iterations in

the decay model (Equation (D.2)) have the same form. Furthermore, for the particu-

lar choice of k = 1− (1/N), they are identical. Thus, though the two models appear

to have very different treatments of memory, they are mathematically equivalent in

terms of their expected outcomes (averaged over many runs), for a particular choice

of k.
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D.2 Equivalence of overall expected behavior

Having established that the two models have equivalent expected treatments of mem-

ory (averaged over many runs), I now show that they have equivalent treatments of

production, in terms of their expected choice of production targets (averaged over

many runs). Since the system evolves by means of producing new tokens to store in

memory, these equivalences jointly imply that the two models are equivalent in terms

of their overall expected behavior (averaged over many runs).

I consider an exemplar stored at time 0 and compare the probability of choosing

that exemplar as production target at time t in both models.

D.2.1 Overwriting model

In the overwriting model, the choice of a given exemplar as production target at time

t has three conditions. Firstly, the exemplar must remain in the system at time t.

Secondly, the speaker must choose to produce the type of which the exemplar is an

instance. Thirdly, the exemplar must be chosen as target from all exemplars of that

type.

The probability of the exemplar remaining in the system at time t is (1− (1/N))t

(Equation (D.1)), the probability of the type being chosen is f/N , and the probability

of the exemplar being chosen from all f exemplars of that type is 1/f . Thus, the

probability of choosing an exemplar as production target t iterations after it was

stored is:

P (exemplar chosen as target at t) =
1

N

(
1− 1

N

)t
(D.3)

D.2.2 Decay model

In the decay model, the choice of a given exemplar as production target at time t has

two conditions: the speaker must choose to produce the corresponding type, and the



APPENDIX D. EXEMPLAR OVERWRITING AND DECAY 192

exemplar must be chosen as target from all exemplars of that type.

The probability of the type being chosen is f/N . The probability of choosing the

exemplar from all exemplars of that type is Sx(T )/
∑

y∈T Sy(t), where Sx(t) = kt is

the strength of the exemplar at time t and
∑

y∈T Sy(t) is the total strength of all

exemplars of that type at time t. Thus, the probability of choosing an exemplar as

production target t iterations after it was stored is:

P (exemplar chosen as target at t) =
f

N
· kt∑

y∈T Sy(t)
(D.4)

For the sake of exploring expected behavior (i.e. behavior on average, over many

runs),
∑

y∈T Sy(t) may be approximated by S?, the expected total strength at any

time. To obtain a value for S?, I consider r synchronized runs of the model (where r

is large) at a particular point in time, with total strengths Ŝ?i (for i from 1 to r) for

a given type. S? is given by the mean of these total strengths.

S? =

∑r
i=1 Ŝ

?
i

r
(D.5)

After a single iteration, each total strength Ŝ?i will have been multiplied by k

due to decay, and (f/N)r of them are expected to have also grown by 1 due to new

productions of the given type. Their mean is still expected to be S?.

S? =

(∑r
i=1 kŜ

?
i

)
+ f

N
r

r
(D.6)

= k

∑r
i=1 Ŝ

?
i

r
+
f

N
(D.7)

Substituting Equation (D.5) into Equation (D.7) yields

S? = kS? +
f

N
(D.8)



APPENDIX D. EXEMPLAR OVERWRITING AND DECAY 193

which can be solved for S?:

S? =
f

N(1− k)
(D.9)

Substituting S? for
∑

y∈T Sy(t) in Equation (D.4) gives an analytic approximation

of the expected probability (averaged over many runs) of choosing an exemplar as

production target t iterations after it was stored:

P (exemplar chosen as target at t) ≈ (1− k)kt (D.10)

Two caveats are required in order for this approximation to be valid. Firstly,

the system must not be in its early iterations. Secondly, the decay rate must not be

extremely fast relative to the range of type frequencies, such that low-frequency types

are expected to have total exemplar strength S? < 1. I describe the caveats in more

detail in Section D.3.

D.2.3 Model comparison

As can be seen, the probability of an exemplar being chosen as a production target

t iterations after it was stored has the same form in both the overwriting (Equation

(D.3)) and the decay (Equation (D.10)) models. As was the case for memory (Section

D.1), these probability expressions are identical for the particular choice of k = 1 −

(1/N). Thus, the overwriting model’s expected overall behavior (averaged over many

runs) is a special case of the decay model’s expected overall behavior (averaged over

many runs). Given an overwriting model with a total number of exemplars N , it is

possible to choose a decay rate k allowing the construction of a decay model with

the same expected overall behavior (averaged over many runs). Consequently, any

overwriting model is equivalent to some decay model.

Note, however, that the reverse equivalence is not always true: for some decay
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models, it is not possible to construct an overwriting model showing the same expected

overall behavior (averaged over many runs). Because an overwriting model necessarily

contains at least one exemplar of each type at every point in time, it requires all types

to have expected exemplar strength S? ≥ 1, which is not true in decay models in which

the decay rate is extremely fast (relative to the range of type frequencies). See Section

D.3 for further discussion.

D.3 Caveats for the decay model

In Section D.2.2, I noted that there are two caveats on the analytical approximation

for production target selection in the decay model. Both caveats concern the ap-

proximation of the total strength of all exemplars of a particular type T at time t,∑
y∈T Sy(t), by the expected total strength at any time, S? (Equation (D.9)).

Firstly, the system must ‘burn in’ – i.e. be run for sufficiently many iterations – in

order for strengths to build to the expected value S?. In other words, the exemplar

distributions for each type must build up to stable densities before the approximation

is valid. Thus, the analytical approximation does not hold for the early iterations of a

decay-based model that is seeded from sparse exemplar distributions. Consequently,

it would not apply to a situation such as a child accumulating experience as they

learn a language. However, given that the model addresses regular sound change,

which can occur within a lifetime and be reflected in the way that an adult’s speech

changes (Harrington, 2006), I do not believe this limitation to prevent insight being

drawn from the model comparison.

Secondly, the system must be defined in such a way that S? is sufficiently greater

than 1. When S? is close to 1, the total strength
∑

y∈T Sy(t) is volatile, as the addition

of 1 strength with each new exemplar constitutes a substantial portion of S?. In this

case,
∑

y∈T Sy(t) will tend to be above S? for small t, meaning that the approximation
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will tend to overestimate the probability of recent exemplars being selected as target.

Consequently, types for which S? / 1 will not have recent exemplars selected as

production targets as often – and thus will not advance as rapidly – as expected under

the approximation. Since S? decreases with type frequency (Equation (D.9)), extreme

cases of the decay model (i.e. ones in which S? ≈ 1 for low-frequency types and S? � 1

for high-frequency types) may thus predict low-frequency types to advance at a slower

rate than high-frequency types. Such extreme cases would arise in the presence of

either an extremely fast decay rate or an extremely long-tailed distribution of type

frequencies, where a high-frequency type is presented for storage orders of magnitude

more often than a low-frequency type.

In what follows, I illustrate how choices made by the modeler can affect this second

caveat, radically altering the qualitative results of a decay-based model (assuming it

has been run for sufficient iterations first, as in the first caveat). To facilitate this

illustration, I introduce two quantities of interest: the e-folding time for the system

and the recurrence time for different types. The e-folding time, defined in Equation

(D.11), is related to the decay rate and represents the number of iterations required

for exemplar strength to decay by a factor of e. From the e-folding time, the exemplar

lifespan can be obtained, representing the number of iterations for which an exemplar

persists in memory; for the following discussion, I assume that an exemplar may be

removed once its strength depletes by more than 99% (following Wedel & Fatkullin,

2017), giving a lifespan of approximately 5 e-folding times. The recurrence time,

defined in Equation (D.13), is the reciprocal of (normalized) type frequency and

represents the expected number of iterations between productions of a given type.

e-folding time: E :=
−1

ln(k)
(D.11)

≈ 1

1− k
(D.12)
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recurrence time: R :=
N

f
(D.13)

Equation (D.12)55 and Equation (D.13) can be substituted in Equation (D.9) to

yield a definition of expected total exemplar strength, S?, in terms of e-folding time

and recurrence time, given in Equation (D.14).

S? ≈ E

R
(D.14)

The definition in Equation (D.14) can be used to easily recognize when the second

caveat will not hold, and thus when frequency effects will be expected in phonetic

drift. Frequency effects can be expected in phonetic drift in a model in which high-

frequency types have recurrence times much shorter than the e-folding time and

low-frequency types have recurrence times at least as long as the e-folding time.

How can the e-folding and recurrence times be determined? Both are measured in

terms of model iterations. An iteration corresponds to the production and perception

of a single token that is considered for storage. Thus, some guidance can be provided

by consideration of the objective rates of production and perception of words in the

real world. After accounting for sampling error (Pierrehumbert & Granell, 2018),

objective recurrence times for different words can be estimated to range from 20 (for

the word the) to more than 100 million (for extremely rare words). To put these

numbers in context, Brysbaert, Stevens, Mandera, and Keuleers (2016) calculate that

the average person may hear just under 12 million words per year, and a typical psy-

cholinguistic study (e.g. Carreiras, Mechelli, & Price, 2006) defines “high-frequency”

words as having recurrence times of approximately 25,000 (40 tokens per million) and

55The approximation in Equation (D.12) is obtained from taking the first-order Taylor polynomial
of ln(k) about 1 and holds provided k is sufficiently close to 1. For example, for all cases discussed
here (k > 0.9995, E ≥ 2000), the multiplicative error in the estimation is 0.025% or less, which does
not substantially impede the ability to identify circumstances in which S? / 1 or S? � 1.
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“low-frequency” words as having recurrence times between 300,000 and 2 million (3

to 0.5 tokens per million). However, these objective distributions do not translate

directly into the model. Since not every actual word token that is uttered need be

considered for storage (as discussed in Section 2.3), the representations of type fre-

quency in the model – and thus the determinations of the e-folding and recurrence

times – rely on subjective distributions. The modeler is free to choose the function

mapping from objective to subjective distributions, giving a large amount of free-

dom over the choice of e-folding and recurrence times. This freedom of choice can

determine model behavior.

For example, if the modeler chooses subjective frequencies that are identical to

objective frequencies, then the extremely large range of recurrence times means that

there is a correspondingly large range of e-folding times in which a model of phonetic

drift will show frequency effects. For example, any e-folding time around 2 million

iterations or less – corresponding to an exemplar lifespan of 10 months or more – will

generate lag among “low-frequency” words as defined by the psycholinguistic litera-

ture. The literature does not contain enough results on the processing of rare words to

determine whether this long exemplar lifespan is appropriate for low-frequency words,

but the use of objective frequencies implies that it must also apply to high-frequency

words, for which it is likely too long. Consequently, any choice of e-folding time that

is not too long for high-frequency words will cause some types to change faster than

others in a model using objective frequencies.

In such a situation, precisely which types change faster will depend upon the e-

folding time. For example, with an e-folding time of 2,000 (following Pierrehumbert,

2001), faster change would be observed among types with recurrence times of less than

around 2,000. For English, this corresponds to a small set of about 200 extremely

common words, which does not have good coverage of the content words defined as

“high-frequency” in the prior literature. Consequently, the frequency effects obtained
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in this situation would not correspond to real effects observed empirically. Under an

alternative e-folding time of 30,000, the set of faster-moving types would expand to

include the approximately 3,000 English words typically defined as “high-frequency”.

In this situation, an exemplar would have a lifespan of approximately 5 days, which

is extremely fast in comparison to the recurrence times for low-frequency words that

occur around once a year (or less). Consequently, a model assuming this e-folding

time and distribution of recurrence times would also have to assume that rare words –

which encompass a non-negligible proportion of the lexicon, as demonstrated in Figure

A.1 – are practically incapable of establishing stable exemplar-based representations

in the minds of typical speakers. Such an assumption would raise questions for studies

drawing on representations of rare words, such as mammary in Bybee’s original work

adducing a connection between word frequency and leniting changes (Hooper, 1976).

Alternatively, if the modeler chooses subjective frequencies that are nonlinearly

‘flattened’ from objective frequencies, then the range of recurrence times is likewise

compressed, and it becomes easier for models to show no frequency effects. For exam-

ple, in the present model, recurrence times range from 41 (for the highest-frequency

type) to 492 (for the lowest-frequency type).56 In a corresponding decay model with

an e-folding time of 2,000 iterations (again following Pierrehumbert, 2001), no fre-

quency effects would be expected in phonetic drift. To provide an indication of what

this e-folding time means on a real-time scale, it is useful to change the interpretation

of subjective frequencies. Previously, I interpreted subjective frequencies as reflecting

the assumption that some tokens are filtered out in perception before being considered

56It is a consequence of the overwriting-based treatment of memory that the recurrence time
for the lowest-frequency type can be no greater than the total number of exemplars in the system.
For reasons of computational resources, the present simulations assume a small number of types
and hence a small number of exemplars, yielding relatively short recurrence times. Scaling up the
number of types in the model will also scale up the recurrence times. If the e-folding time is not
scaled up commensurately, then there are certain parameter ranges in which frequency effects can
be expected in phonetic drift (where the e-folding time falls between the recurrence times for high-
and low-frequency types).
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for storage, with more filtering for higher-frequency types. Alternatively, it can be

maintained that all tokens are considered for storage, and subjective frequencies can

be interpreted as reflecting the assumption that exemplars of higher-frequency types

are stored with lower initial strength, giving them shorter lifespans. Under this inter-

pretation, an e-folding time of 2,000 means that “high-frequency” words (as defined

in the psycholinguistic literature) would have lifespans of around 1–2 months, while

“low-frequency” words would have lifespans of around 5–10 months. Much work

remains to be done in investigating a real-world-scale decay version of the present

model, but such work goes beyond the scope of the present discussion.

To summarize, the question of whether or not a decay-based model meets the

second caveat – and thus whether it displays no frequency effects or a high-frequency

advantage in phonetic drift – depends on the relationship between the e-folding time,

determined by the decay rate, and the distribution of recurrence times, determined by

subjective type frequencies. To generate frequency effects, the e-folding time needs to

be sufficiently fast and the range of recurrence times sufficiently large. Furthermore,

when there are frequency effects, the subset of words that change faster is determined

by where the e-folding time falls in the distribution of recurrence times.

The e-folding time and distribution of recurrence times are determined by choices

made by the modeler, which concern the decay rate and the function mapping from

objective to subjective type frequency. The most appropriate choices have not yet

been determined in the literature, as it is unclear precisely how long exemplars may

persist in memory – particularly for extremely rare words – and precisely how an in-

coming stream of tokens is filtered to allow only a subset to be presented for potential

storage. Until the appropriate choices are elucidated by the literature, I believe it is

reasonable to assume that they meet with the caveats outlined in this section, and

thus that the overwriting-based and decay-based models are truly (bidirectionally)

equivalent.
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D.4 Direct comparison to Pierrehumbert (2001)

In this appendix, I have pointed out that the expected behavior (averaged over many

runs) of a model in which memory turnover involves random overwriting of exemplars

is equivalent to that of one in which memory turnover involves exponential decay of

exemplars, provided the latter meets the caveats in Section D.3. However, the re-

sults of the most well-known exemplar model in the literature (Pierrehumbert, 2001),

which uses exponential decay, appear to differ from those of the present model, which

uses random overwriting. For simulations of phonetic drift, Pierrehumbert (2001)

reported that high-frequency words change faster than low-frequency words, whereas

the present model yields no frequency effect. Since Pierrehumbert (2001) has been

widely cited as a demonstration that exemplar models necessarily predict frequency

effects (that favor high-frequency words), it is important to diagnose the reasons for

this difference.

Pierrehumbert (2001) represents the first foray into formal modeling of exemplar

dynamics in sound change, and lays important groundwork for the present model.

However, as pioneering work, Pierrehumbert’s model is necessarily very schematic,

and has some limitations. The limitation that is primarily responsible for the dis-

crepancy with the results of the present model concerns the model architecture.

The model presented by Pierrehumbert (2001) does not contain a lexical (type)

level, meaning that – without frequency-based variation in the decay rate or exemplar

lifespan – it is technically incapable of obtaining type frequency effects in simulations

involving a single phoneme category. Without separate type representations, each

phoneme category effectively contains a single type and the same type is necessarily

produced on every iteration. Pierrehumbert (2001) observes that the advancement of

the type’s exemplars is determined by the number of iterations for which the simula-

tion is run: the more iterations, the more the type is produced with articulatory bias,



APPENDIX D. EXEMPLAR OVERWRITING AND DECAY 201

and thus the more it advances. While it is tempting to interpret this observation as

reflecting an effect of frequency, it actually reflects an effect of time. This is because

each iteration also corresponds to a single application of decay. After sufficient it-

erations, a specific exemplar will become so weak that its contribution is negligible,

meaning it can effectively be dropped from the system. Thus, exemplars have a lifes-

pan, which corresponds to a certain period of time, and each iteration represents a

fixed fraction of this lifespan. Both the decay rate and the lifespan of an exemplar

are assumed not to vary with type frequency. Therefore, regardless of type frequency,

each iteration corresponds to a fixed period of time, and running a simulation for more

iterations corresponds to observing a change over a greater period of time. Having

the potential to observe an effect of frequency would require the number of iterations

taking place in a given period of time to vary with type frequency. This would only

be possible in simulations of a single type if decay rate or exemplar lifespan were

assumed to vary with type frequency.

In simulations with multiple types within the same category, by contrast, each

type may be produced on different numbers of iterations within the same period of

time. The present model, which has type-level representations, shows that phonetic

drift is typically unaffected by type frequency. In a decay-based model that meets

the caveats laid out in Section D.3, this lack of frequency effect follows because the

strengths of exemplars of a given type continue to decay during the gaps between

productions of that type. The shorter the gap, the stronger old exemplars of the type

will be relative to the most recent exemplar, and thus the more they will compete

with it to provide the acoustic target for the next production of the type. Competi-

tion from old exemplars holds a category back, since old exemplars represent earlier

(less advanced) stages of the change. Since a high-frequency type has shorter gaps

between productions than a low-frequency type, it will be held back by competition

from old exemplars more, counterbalancing the fact that it will be produced (with
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articulatory bias) more often. I illustrate this process in Figure D.1, using parameters

corresponding to the simulations presented in this dissertation.

The fact that the model presented by Pierrehumbert (2001) is technically unable

to display frequency effects in phonetic drift renders moot the question of differences

from the present model. While some decay-based models (with type-level represen-

tations) do display frequency effects in phonetic drift, consistent with the broader

suggestions made by Pierrehumbert (2001), these effects are contingent on modeler

choices, as discussed in Section D.3. The literature to date has not recognized this

contingency and has taken Pierrehumbert’s suggestions extremely generally, giving

rise to criticisms that exemplar models necessarily over-predict word frequency ef-

fects and cannot explain all the patterns found in empirical studies (Abramowicz,

2007; Bermúdez-Otero et al., 2015; Dinkin, 2008; Tamminga, 2014). As I have shown,

these criticisms are not applicable to exemplar models as a class, and the new model

presented in this dissertation is successful in generating all of the reported patterns.
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(A)

(B)

Figure D.1: Counterbalancing frequency effects in phonetic drift. Gaps between productions cause
high-frequency types (orange; left) to be held back by competition with old exemplars more than low-
frequency types (green; right). (A) Comparison of strength of most recent exemplar (red triangle) to
strength of older exemplars of the same type (black circles). A high-frequency type has many more
old exemplars than a low-frequency type, with correspondingly greater strengths. (B) Probability
of selecting the most recent exemplar (red triangle) as the target for production of the type. Since
the aggregate strength of old exemplars is greater for a high-frequency type than for a low-frequency
type, they compete much more for selection.



Appendix E

Zero-inflated negative binomial

regression

In Chapter 4, I introduced zero-inflated negative binomial (ZINB) regression as an

effective way of analyzing count data that are sparse (containing few non-zero values)

and bursty / overdispersed (containing extremely variable values). In particular, I

argued that ZINB regression was effective for discourse variables such as eh, where

there are two reasons why a speaker may not use the variable in an interview – because

it is not in their linguistic repertoire, or because the circumstances for using it did not

arise – and where a small number of speakers who do use the variable may use it in

excessive, non-representative way. In this appendix, I show the mathematical details

of the two properties that make ZINB regression effective in this case, which are

conveniently represented by the “zero-inflated” and “negative binomial” components

of the name.

204
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E.1 “Zero-inflated”

The “zero-inflated” property of ZINB regression helps to deal with the sparsity of

the data. For the application to discourse variables, this means that it attempts to

disentangle whether a particular individual’s failure to use the variable in an interview

is because they don’t have it in their linguistic repertoire or because the circumstances

for using it did not arise. It does this by assuming the data are generated from a two-

stage process, where the first process determines whether a speaker has the variable

in their repertoire or not, and the second process determines how often a speaker

with the variable in their repertoire will use it. Correspondingly, a ZINB regression

consists of two components: a binary logistic regression component, which estimates

the probability that a speaker has the variable in their repertoire; and a negative

binomial regression component, which estimates the number of times a speaker will

use the variable. These components are jointly estimated on the basis of the data, to

minimize the errors of the predicted probability distribution over the number of uses

of the variable, N , for each cell of speakers:

P (N = n) = (1− P (in repertoire)) · δ0(n) +P (in repertoire) ·P (N = n|in repertoire)

(E.1)

where δ0(n) evaluates to 1 when n = 0 and to 0 otherwise. P (in repertoire) is the

output of the logistic regression component and P (N = n|in repertoire) is the output

of the negative binomial regression component. Either component can be assessed to

cause an individual speaker to fail to use the discourse variable (the case N = 0);

failures caused by the logistic regression component correspond to the speaker not

having the variable in their repertoire, and failures caused by the negative binomial

regression component correspond to the speaker having the variable in their repertoire

but not finding the circumstances required for its use.



APPENDIX E. ZERO-INFLATED NEGATIVE BINOMIAL REGRESSION 206

E.2 “Negative binomial”

The “negative binomial” property of ZINB regression helps to deal with the bursti-

ness, or overdispersion, of the data. For the application to discourse variables, this

means that it attempts to downweight non-representative speakers who use the vari-

able excessively. It does this by extending Poisson regression, which is the standard

method for analyzing count data. To illustrate both of these methods, consider a cell

containing 10 speakers, each of whom utters 10,000 words in their interview. Assume

that one speaker uses the discourse variable of interest ten times, one uses it four

times, three speakers use it twice each, and five speakers do not use it, for a total of

20 uses across all speakers in the cell. In the discussion that follows, assume that the

discourse variable is in the repertoire of all speakers in the cell, even though some

didn’t use it in their interview.57

Poisson regression takes a ‘bag-of-words’ approach to analyzing the use of the

discourse variable by speakers in the cell: all 100,000 words of the 10 speakers are put

in a bag (individually), and each speaker’s interview is considered to be a set of 10,000

random draws from this bag (with replacement). The number of times that a speaker

uses the discourse variable is therefore modeled by the outcome of 10,000 independent

random draws of a word, each of which has a 1 in 5,000 chance of being the discourse

variable. Considering all such outcomes generates a probability distribution over the

number of uses of the discourse variable, which can be generalized to expectations

from a new speaker in the same cell (in an interview where they utter 10,000 words).

This probability distribution is characterized by the proportion of words in the bag

that are the discourse variable (1 in 5,000), which is referred to as the rate parameter,

λ; the mathematical form of the distribution is given in Equation (E.2).

57Correspondingly, assume that all probability distributions are conditioned on the existence of
the variable in the speaker’s repertoire – though, for convenience, I do not write this condition
throughout.
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P (N = n) =
e−λλn

n!
(E.2)

Negative binomial regression also takes a ‘bag-of-words’ approach to analyzing the

use of the discourse variable by speakers in the cell, but it is rather more complex than

the Poisson regression approach. Instead of assuming that all speakers draw from the

same bag, negative binomial regression allows speakers to draw from different bags.

These different bags may contain different numbers of the discourse variable, corre-

sponding to different rate parameters: for example, in one bag, the rate parameter

may be 1 in 10,000 (1 instance of the discourse variable in the bag), whilst in another,

it may be 1 in 1,000 (10 instances of the discourse variable in the bag). In this way,

nonrepresentative speakers who use the variable excessively will draw from a different

bag than standard speakers. When a new speaker is encountered, they are assigned

a bag at random; however, they are more likely to get a standard bag, containing few

instances of the discourse variable, than a nonrepresentative bag, containing many

instances of the discourse variable. Accordingly, the predictions for new speakers

will not be skewed by the contributions of a few nonrepresentative speakers who use

the variable excessively. Formally, the rate parameter is assumed to be distributed

according to a random variable Z:

P (N = n|z) =
e−λz (λz)n

n!
, where P (Z = z) = g(z) (E.3)

Integrating out the condition in Equation (E.3) gives:

P (N = n) =
λn

n!

∫ ∞
0

e−λzzng(z) dz, where P (Z = z) = g(z) (E.4)

For negative binomial regression, the rate parameters are assumed to follow a

gamma distribution, with the gamma distribution parameters α and β both taking
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on the value θ.58 Smaller values of θ correspond to more overdispersion in the data,

i.e. more influence of non-representative speakers who use the discourse variable ex-

cessively.

g(z) =
θθ

Γ(θ)
zθ−1e−θz (E.5)

Thus, the probability distribution over counts becomes:

P (N = n) =
λnθθ

n!Γ(θ)

∫ ∞
0

e−(λ+θ)zzn+θ−1 dz (E.6)

=
λnθθ

n!Γ(θ) (λ+ θ)n+θ

∫ ∞
0

[(λ+ θ) z]n+θ−1 e−(λ+θ)z (λ+ θ) dz (E.7)

Substituting u = (λ+ θ) z, Equation (E.7) becomes:

P (N = n) =
λnθθ

n!Γ(θ) (λ+ θ)n+θ

∫ ∞
0

un+θ−1e−u du (E.8)

Now since Γ(x) =
∫∞
0
yx−1e−y dy by definition, Equation (E.8) becomes:

P (N = n) =
λnθθ

n!Γ(θ) (λ+ θ)n+θ
Γ(n+ θ) (E.9)

=
Γ(n+ θ)

n!Γ(θ)

(
λ

λ+ θ

)n(
θ

λ+ θ

)θ
(E.10)

The probability distribution represented in Equation (E.10) is that used for the

negative binomial regression component in ZINB regression (Equation (E.1)).

58Setting α = β is required in order to preserve the expected value of N under the assumption
of a distribution over λ.
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and /t/ aspiration in Māori and New Zealand English. Language Variation and

Change, 21 (2), 175. doi: 10.1017/S095439450999007X

Maegaard, M., Jensen, T. J., Kristiansen, T., & Jørgensen, J. N. (2013). Diffusion of

language change: Accommodation to a moving target. Journal of Sociolinguis-

tics , 17 (1), 3–36. doi: 10.1111/josl.12002

Marslen-Wilson, W., & Tyler, L. K. (1980). The temporal struc-

ture of spoken language understanding. Cognition, 8 , 1–71. doi:

10.1016/0010-0277(80)90015-3

Martinet, A. (1952). Function, structure, and sound change. Word , 8 (1), 1–32. doi:

10.1080/00437956.1952.11659416

McGowan, K. B. (2015). Social expectation improves speech perception in noise.

Language and Speech, 58 , 505–521. doi: 10.1177/0023830914565191

Medin, D. L., & Schaffer, M. M. (1978). Context Theory of classification learning.

Psychological Review , 85 (3), 207–238. doi: 10.1037/0033-295X.85.3.207

Mengesha, Z., Todd, S., & Sumner, M. (2019). Talker voice and stereotype in the

false recall of spoken words. Poster presented at the 93rd Annual Meeting of

the Linguistic Society of America, New York, NY.

Meyerhoff, M. (1992). “We’ve all got to go one day, eh”: Powerlessness and solidarity

in the functions of a New Zealand tag. In K. Hall, M. Bucholtz, & B. Moon-

womon (Eds.), Locating power: Proceedings of the second Berkeley women and

language conference (pp. 409–419). Berkeley, CA: Berkeley Women and Lan-

guage Group.

https://doi.org/10.1002/9781444335262.wbctp0073
https://doi.org/10.1097/00003446-199802000-00001
https://doi.org/10.1075/eww.27.1.02mac
https://doi.org/10.1121/1.387344
https://doi.org/10.1017/S095439450999007X
https://doi.org/10.1111/josl.12002
https://doi.org/10.1016/0010-0277(80)90015-3
https://doi.org/10.1080/00437956.1952.11659416
https://doi.org/10.1177/0023830914565191
https://doi.org/10.1037/0033-295X.85.3.207


BIBLIOGRAPHY 220

Meyerhoff, M. (1994). Sounds pretty ethnic, eh?: A pragmatic particle

in New Zealand English. Language in Society , 23 (3), 367–388. doi:

10.1017/S0047404500018029

Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J., Chen, K., & Dean,

J. (2013). Distributed representations of words and phrases and their com-

positionality. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, &

K. Q. Weinberger (Eds.), Advances in neural information processing systems 26

(pp. 3111–3119). Curran Associates, Inc. doi: 10.1162/jmlr.2003.3.4-5.951

Miller, G. A., & Nicely, P. E. (1955). An analysis of perceptual confusions among

some english consonants. Journal of the Acoustical Society of America, 27 (2),

338–352. doi: 10.1121/1.1907526

Milroy, J., & Milroy, L. (1985). Linguistic change, social network and

speaker innovation. Journal of Linguistics , 21 (2), 339–384. doi:

10.1017/S0022226700010306

Milroy, J., Milroy, L., Hartley, S., & Walshaw, D. (1994). Glottal stops

and Tyneside glottalization: Competing patterns of variation and change

in British English. Language Variation and Change, 6 , 327–357. doi:

10.1017/S095439450000171X

Ministry of Education. (2007). The New Zealand curriculum. Retrieved from

nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum

Morton, J. (1969). Interaction of information in word recognition. Psychological

Review , 76 (2), 165–178. doi: 10.1037/h0027366

Munro, M. J., Derwing, T. M., & Flege, J. E. (1999). Canadians in Alabama: A

perceptual study of dialect acquisition in adults. Journal of Phonetics , 27 (4),

385–403. doi: 10.1006/jpho.1999.0101

Murray, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical ac-

cess: The rank hypothesis. Psychological Review , 111 (3), 721–756. doi:

10.1037/0033-295X.111.3.721

Nguyen, N., Shaw, J. A., Tyler, M. D., Pinkus, R. T., & Best, C. T. (2015). Af-

fective attitudes towards Asians influence perception of Asian-accented vow-

els. In The Scottish Consortium for ICPhS 2015 (Ed.), Proceedings of the

18th international congress of phonetic sciences. Glasgow: University of Glas-

gow. Retrieved from http://www.internationalphoneticassociation.org/

icphs-proceedings/ICPhS2015/Papers/ICPHS0561.pdf

https://doi.org/10.1017/S0047404500018029
https://doi.org/10.1162/jmlr.2003.3.4-5.951
https://doi.org/10.1121/1.1907526
https://doi.org/10.1017/S0022226700010306
https://doi.org/10.1017/S095439450000171X
nzcurriculum.tki.org.nz/The-New-Zealand-Curriculum
https://doi.org/10.1037/h0027366
https://doi.org/10.1006/jpho.1999.0101
https://doi.org/10.1037/0033-295X.111.3.721
http://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0561.pdf
http://www.internationalphoneticassociation.org/icphs-proceedings/ICPhS2015/Papers/ICPHS0561.pdf


BIBLIOGRAPHY 221

Niedzielski, N. (1999). The effect of social information on the perception of soci-

olinguistic variables. Journal of Language and Social Psychology , 18 (1), 62–85.

doi: 10.1177/0261927X99018001005

Nielsen, K. (2011). Specificity and abstractness of VOT imitation. Journal of Pho-

netics , 39 (2), 132–142. doi: 10.1016/j.wocn.2010.12.007

Nokes, J., & Hay, J. (2012). Acoustic correlates of rhythm in New Zealand En-

glish: A diachronic study. Language Variation and Change, 24 , 1–31. doi:

10.1017/S0954394512000051

Norris, D., & McQueen, J. M. (2008). Shortlist B: A Bayesian model of con-

tinuous speech recognition. Psychological Review , 115 (2), 357–395. doi:

10.1037/0033-295X.115.2.357

Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech.

Cognitive Psychology , 47 (2), 204–238. doi: 10.1016/S0010-0285(03)00006-9

Nosofsky, R. M. (1985). Overall similarity and the identification of separable-

dimension stimuli: A choice model analysis. Perception & Psychophysics , 38 (5),

415–432. doi: 10.3758/BF03207172

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization

relationship. Journal of Experimental Psychology: General , 115 (1), 39–61. doi:

10.1037/0096-3445.115.1.39

Nosofsky, R. M. (1991). Tests of an exemplar model for relating perceptual classifi-

cation and recognition memory. Journal of Experimental Psychology: Human

Perception and Performance, 17 (1), 3–27. doi: 10.1037/0096-1523.17.1.3

Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Pro-

ceedings of the National Academy of Sciences , 96 (14), 8028–8033. doi:

10.1073/pnas.96.14.8028

O’Flaherty, S. (2015, March 10). Do you speak Kiwinglish? New Zealand’s

distinct linguistic identity. The Guardian. Retrieved from http://

www.theguardian.com/media/mind-your-language/2015/mar/10/do-you

-speak-kiwinglish-new-zealands-distinct-linguistic-identity

Ohala, J. J. (1981). The listener as a source of sound change. In C. S. Masek,

R. A. Hendrick, & M. F. Miller (Eds.), Papers from the parasession on language

and behavior (pp. 178–203). Chicago, IL: Chicago Linguistic Society.

Onysko, A., & Calude, A. (2013). Comparing the usage of Māori loans in spoken and
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