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S1 Model details

In this section, we present the equations and technical details underlying the computational model
presented in Section 3 of the paper, and make fine-grained comparisons with previous exemplar
dynamics models with respect to these details.

S1.1 Initial data

The model is initialized by providing an initial exemplar cloud for each category, i.e. a distribution
of exemplars across a set of types. There are three components to the initial exemplar cloud for
each category:

• A set of types, whose frequencies follow a specified type-frequency distribution.

• A set of exemplars, whose acoustic values follow a specified acoustic distribution. The total
number of exemplars is equal to the sum of type frequencies for the category.

• An assignment of exemplars to types, such that a given type of frequency f has f exemplars,
in accordance with the multiple-trace hypothesis (Hintzman & Block, 1971).

We generated a distinct set of 92 types for each category, so that our system did not include
minimal pairs. We used the same type-frequency distribution for each category. This distribution
was based on the distribution of word log-frequencies in COCA: The Corpus of Contemporary
American English (Davies, 2008-) (see Figure S1).

We chose the log-transformation of corpus frequency because it reflects the fact that partic-
ipants underestimate the frequency of common words (Begg, 1974), and is consistent with the
“negatively accelerated, increasing relation between represented and actual frequency” observed by
Nosofsky (1991, p. 15). While many other transformations are also consistent with this observa-
tion, the log-transformation is widely used in processing models and empirical studies assessing a
relationship between word frequency and behavior (in terms of both behavioral response properties
– e.g. reaction time and categorization probability – and word realization properties – e.g. duration
and acoustic quality), both for words in isolation (e.g. Murray & Forster, 2004, and studies cited
therein) and for words in context (e.g. Smith & Levy, 2013, and studies cited therein). Importantly,
log-frequencies are used in all of the studies of word frequency effects in sound change that our
model attempts to explain.
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Figure S1: (A) The distribution of word frequencies in COCA (Davies, 2008-). Panels show the number of unique
words (left) and the sum of word log-frequencies (middle) in each word log-frequency bin, and the sum of word
log-frequencies in each of four word frequency classes (right), from “low-frequency” (bins 1–3; lightest gray) to “high-
frequency” (bins 10–12; darkest gray). We calculated log-frequencies using the natural logarithm and binned them
by rounding up, then excluded words occurring extremely infrequently (log-frequency 0) or extremely frequently (log-
frequency > 12). (B) We modeled the distribution of type frequencies in our simulations on the distribution observed
in COCA, equating words with types, and type frequency (and thus number of exemplars per type, following the
multiple-trace hypothesis (Hintzman & Block, 1971)) with word log-frequency. This yielded notable symmetry across
frequency classes (right panel): there are as many exemplars of low-frequency types as there are of high-frequency
types.

As a consequence of using corpus log-frequencies, we obtained the same number of exemplars of
high-frequency types (with few types and many exemplars per type) as exemplars of low-frequency
types (with many types and few exemplars per type). This means that, in our system, the set of
exemplars of all high-frequency types and the set of exemplars of all low-frequency types are both
updated at the same rate1; any observed effects of type frequency are thus based on differences in
the way that types are processed, not on differences in sheer quantity of exemplars.

For each category, we generated a set of 492 exemplars with acoustic values following a raised-
cosine distribution. We used a raised-cosine distribution because its short tails are less susceptible
to iterated sampling error than the long tails of a normal distribution, and thus are more robust
to the effects of discriminability and typicality evaluation. We sampled from this distribution in
such a way that the sample of exemplars of high-frequency types was identical to the sample of
low-frequency types (and similarly for mid-high- and mid-low-frequency types). This sampling
strategy means that there is no frequency asymmetry in the initial conditions of our model; any

1In a given period of time, a given high-frequency type is produced and perceived more than a given low-frequency
type, but high-frequency types in aggregate are produced and perceived the same number of times as low-frequency
types in aggregate, since there are many fewer high-frequency types than low-frequency types (Zipf, 1935).
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Table S1: Initial exemplar distribution statistics for type frequency classes.

Freq. N Mean SD Skew Ex. Kurtosis

(All) 492 −0.013 0.998 0.109 −0.717

HF 53 −0.009 0.999 0.097 −0.770

MHF 193 −0.013 0.998 0.112 −0.702

MLF 193 −0.013 0.998 0.112 −0.702

LF 53 −0.009 0.999 0.097 −0.770

observed effects of type frequency over time are thus based on differences in the way that types
are processed, not on differences in initial conditions. Finally, we assigned identical (but displaced)
initial exemplar sets to each category, to ensure that any observed differences between categories
are due to category interaction and not initial conditions.

The process we used to sample the initial exemplar sets was as follows. First, we drew 246
values from the raised cosine distribution whose probability density function is given in Equation
(S1) and rounded them to the nearest 0.1.

r(v) =


c

2
(1 + cos (cπv)) if v ∈

[
−1

c
,
1

c

]
0 otherwise

(S1)

where

c =

√
1

3
− 2

π2
(S2)

We re-drew values until we obtained a sample with mean approximately equal to zero, standard
deviation approximately equal to 1, and low skewness. We then split this sample into two subsets
of 53 and 193, ensuring that the statistics for each subset were approximately equal to the statistics
across the entire sample. We made two copies of each subset and designated them to classes of types
on the basis of type frequency; we designated a copy of the first subset (with 53 exemplars) for each
of the high- and low-frequency classes, and a copy of the second subset (with 193 exemplars) for each
of the mid-high- and mid-low-frequency classes. The statistics for the sample and frequency-class
subsets are given in Table S1.

We used this distribution of acoustic values as the basis of all simulations with the model,
adjusting it as required by the parameters of the simulation. To create initial categories of width
σ, we scaled the acoustic value of every exemplar by σ. To create an initial category distance of µ
between the categories, we subtracted µ from the (scaled) acoustic value of each of the exemplars
in the Pusher. Following any adjustments, we re-rounded the acoustic values to the nearest 0.1.

In each run of the model, we assigned the exemplars for a given frequency class to types in
that frequency class at random, ensuring that a given type of frequency f had f exemplars. This
random assignment means that the results of many runs of the model with a given set of parameter
values reflect the dynamics expected on average under that set of parameter values, independent
of the effects of initial allocation of exemplars to types.
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S1.2 Model processes

Each iteration of the model consists of a single token being produced and submitted to perceptual
evaluation (and thus potentially stored). In this section, we describe the implementation details for
the processes making up an iteration, and we compare the details in our model to those in other
exemplar-based models.

S1.2.1 Type Selection

In type selection, a type (from either category) is chosen at random based on its frequency. The
probability of choosing type Tk, of frequency fk, is given by Equation (S3).2

P (Tk) =
fk∑
j fj

(S3)

S1.2.2 Target Selection

In target selection, an exemplar of the selected type is chosen at random, uniformly, and used to
provide an acoustic target for the production. The probability of choosing exemplar j of type Tk,
with acoustic value xj,k, is given by Equation (S4).

P (v = xj,k|Tk) =
1

fk
(S4)

S1.2.3 Bias

If the target type is a member of the Pusher category, then the addition of bias adds β (a parameter)
to the target v, yielding a new target v′. If the target type is a member of the Pushee category, no
bias is added. This is exemplified in Equation (S5).

v′ =

{
v + β if target is Pusher

v if target is Pushee
(S5)

The function of bias is to enforce sustained category interaction and promote long-term move-
ment in one direction. Thus, bias itself does not cause categories to interact, but rather gives
categories sustained opportunities to interact. In Section S3.3.2, we show that simulations without
bias exhibit decreasing category interaction over time.

Our treatment of bias as systematic, i.e. applied to all tokens (of the Pusher) equally, follows
that presented by Pierrehumbert (2001, 2002). The major downside to this treatment is that the
bias is unconstrained and continues acting in the same way throughout the simulation, generating
perpetual category movement. Other authors (Wedel, 2006; Wedel & Fatkullin, 2017; Sóskuthy,
2013; Tupper, 2015) use instead a bias that applies to tokens differentially, based on their distance
from some fixed attractor point. This alternative treatment places constraints on the movement
induced by the bias, causing movement to cease when the Pusher reaches the attractor. While it
is easy to understand how such an attractor may arise in the case of leniting biases (i.e. through
the minimization of articulatory effort), it is harder to understand how an attractor may arise
in sound change more generally, assuming that it is not something the speaker can agentively
establish. Our chosen treatment of systematic bias may be seen as a convenient way to sidestep

2The type frequencies underlying production are the same as those underlying perception, and thus reflect real-
world log-frequency. See Appendix A.3 of the paper for discussion.
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this issue. We point out that the generation of perpetual movement under our treatment is a reflex
of the simplicity of the modeling environment: with the inclusion of additional repellers in the
system (provided by other categories and/or articulatory limits), movement would no longer be
unconstrained (Sóskuthy, 2013). We further point out that our treatment is almost equivalent to
an attractor-based treatment in which the attractor is sufficiently far from the Pusher’s boundary
with the Pushee.

S1.2.4 Imprecision

Under imprecision, random noise n is added to the target v′, yielding a final target v′′ for the
transmitted token, as shown in Equation (S6). n is a single sample from a normal distribution with
standard deviation ι (a parameter); the larger ι, the more the target may deviate.

v′′ = v′ + n n ∼ N (0, ι2) (S6)

The final target v′′ is rounded to the nearest 0.1 before the token is transmitted.
The function of imprecision is to allow a discrete set of exemplars to generate a continuous

distribution over the perceptual-acoustic space from which targets can be sampled in production.
In this way, imprecision allows for novelty in production targets.

The use of token-wise imprecision generates a non-parametric sampling distribution. This
approach is standard in exemplar dynamics models, but other approaches are also possible. For ex-
ample, Harrington et al. (2018) generate a parametric sampling distribution by inferring a Gaussian
distribution over all exemplars of a category. A parametric approach forces all exemplar distribu-
tions to have a common shape, with fixed kurtosis and zero skewness. This enforcement makes
meeting a model desideratum of shape maintenance almost trivial, which is advantageous; how-
ever, it doesn’t allow for the modeling of distributions that differ substantially from the parametric
(Gaussian) shape.

S1.2.5 Activation

Upon transmission of the token, all exemplars (of both categories) are activated to some extent,
according to their distance from the token in the perceptual-acoustic space. The activation Ai of
category Ci is given by the sum of the activations of exemplars belonging to that category, as shown
in Equation (S7).

Ai =
∑
x∈Ci

wa(v
′′ − x) (S7)

The degree to which the token activates each exemplar is provided by a Gaussian window wa
with width α (a parameter), as shown in Equation (S8). Exemplars that are very near the token
are given activations close to 1, while exemplars that are very far away are given activations close
to 0. Increasing α causes exemplars within a wider radius to be given non-negligible activations.

wa(d) = exp

(
−d2

2α2

)
(S8)

Most previous exemplar-based models of regular sound change have used a rectangular (Pierre-
humbert, 2001, 2002; Ettlinger, 2007) or exponential (Wedel, 2006, 2012; Wedel & Fatkullin, 2017)
activation window (though note the use of a Gaussian window by Sóskuthy (2013), by appeal to
common practice in kernel density estimation, a statistical technique with the same mathematical
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underpinnings as exemplar-based modeling (Ashby & Alfonso-Reese, 1995)). Our use of a Gaussian
window here is motivated by discussion in the psychological literature of an equivalent parameter
(p) in exemplar-based models of categorization using Multi-Dimensional Scaling. For example,
Nosofsky (1985) found that asymptotic human categorization data (i.e. highly successful catego-
rization which accesses pre-learnt structures) is better modeled with a Gaussian activation window
than an exponential one, and Shepard (1958) developed an underlying process model predicting
that a Gaussian activation window should arise under cases of infrequent feedback of categorization
correctness, while an exponential window should arise under continuous feedback (which arguably
does not occur in language, at least directly). The Gaussian window also has the practical advantage
that it is smooth, whereas the rectangular and exponential windows are not (they contain jumps
and a sharp peak, respectively); this ensures that the activation fields obtained in the modeling
process are also smooth, even when exemplar distributions are sparse.

S1.2.6 Identification

Since we assume no minimal pairs and perfect transmission of the phonological frame, the intended
category Ci is always able to be accurately identified. Whether or not the exemplar is stored is
determined by the extent to which it is discriminable as a member of the intended category as
opposed to the other category, and by the extent to which it is typical of the intended category.
Both of these are assessed by probabilistic evaluations.

S1.2.7 Discriminability Evaluation

The probability of passing the discriminability evaluation is determined by comparing the ratio
of category activations (intended category activation, Ai, divided by other category activation,
Ao) to the discriminability threshold, δ (a parameter). When the ratio is equal to the threshold,
the probability of passing the evaluation is 0.5, as shown in Equation (S9). As the ratio grows
relative to the threshold, so too does the probability of passing the evaluation. This means that
decreasing δ increases the probability of passing the discriminability threshold, and thus increases
discriminability.

P (pass discriminability evaluation|Ai, Ao) =

Ai
Ao

Ai
Ao

+ δ
(S9)

The formulation of discriminability evaluation in Equation (S9) is equivalent to an application of
the Generalized Context Model (Nosofsky, 1986), which extends the application of Luce’s Choice
Rule (Luce, 1959) over category activations in the Context Model (Medin & Schaffer, 1978) by
incorporating category response biases. Here, the bias towards the intended category Ci is 1/δ and
the bias towards the other category Co is 1, as shown by Equation (S10).

P (pass discriminability evaluation|Ai, Ao) =
1
δ ·Ai

1
δ ·Ai + 1 ·Ao

(S10)

This equivalence allows for an alternative interpretation of discriminability evaluation, as the
act of categorizing the input. Under this interpretation, categorizations that are not sufficiently
supported by context – in this case, yielding types corresponding to non-words – are blocked from
storage.
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Note from Equation (S10) that δ has a multiplicative effect on activations, not an additive effect
as in the Logogen model (Morton, 1969). This means that the activation of an exemplar of a high-
frequency type is not on average higher than the activation of an exemplar of a low-frequency type,
independent of acoustic value; rather, a token of a high-frequency type garners more activation
than an otherwise identical token of a low-frequency type (i.e. one with the same acoustic value).

The notion of being unlikely to store tokens that have limited discriminability is also seen in
models presented by Wedel (2006, 2012). There, tokens are categorized probabilistically according
to the Context Model (Equation (S10) with δ = 1), and the result is stored with probability equal to
the categorization probability. This means that tokens that activate both categories to comparable
extents, i.e. tokens with limited discriminability, are unlikely to be robustly recognized and stored,
just as in the model presented in this paper.

Some models make a stronger assumption that tokens with low discriminability may never be
stored. For example, in the model presented by Harrington et al. (2018), tokens are assigned to
the category with maximum likelihood and only stored if that category contains a consistent type
(i.e. a word with the same phonological frame as the token). In the absence of minimal pairs, a
low-discriminability token – with higher acoustic similarity to a nonword type than to the intended
type – will never be stored. Because maximum likelihood categorization creates a hard boundary at
the intersection point of two categorization probability distributions, it prevents category overlap
(Tupper, 2015; Wedel & Fatkullin, 2017).

S1.2.8 Typicality Evaluation

The probability of passing the typicality evaluation is determined by comparing the activation
of the intended category, Ai (normalized for the number of exemplars of the category, Ni), to the
typicality threshold, τ (a parameter). When the activation is equal to the threshold, the probability
of passing the evaluation is 0.5, as shown in Equation (S11). As the activation grows relative to
the threshold, so too does the probability of passing the evaluation. This means that decreasing
τ increases the probability of passing the typicality threshold, and thus decreases sensitivity to
typicality.

P (pass typicality evaluation|Ai) = 1− exp

(
− ln 2 · Ai

Niτ

)
(S11)

The formulation of typicality evaluation in Equation (S11) is inspired the Complete Set Model
of Busemeyer et al. (1984). In this model, a “junk” category competes with established categories
in the classification of a token; when the token does not yield sufficient activation, it is discarded
as junk. The junk category has no exemplar basis of representation and thus is not included in the
application of Luce’s Choice Rule (i.e. in the equivalent of Equation (S10)); instead, it discounts
the probability mass of each category (as derived from Luce’s Choice Rule) by a scale factor. As
shown in Equation (S12), this is equivalent to a two-stage process where the scale factor represents
the probability associated with a junking decision that is contingent on categorization.

P (member of Ci and not junk) = P (member of Ci) · P (not junk|member of Ci) (S12)

We equate this post-categorization junking decision with typicality evaluation. Busemeyer et al.
(1984) assume that junking is independent of (and thus potentially precedes) categorization, with
the probability of junking decreasing exponentially with total activation across all categories. We
keep the same form for our treatment of typicality evaluation (Equation (S11)), but assume that
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only the activation of the chosen (intended) category contributes. This follows from our treatment
of typicality evaluation as occurring after identification and discriminability evaluation and hence
assessing the extent to which the token is typical for the category to which it has been confidently
assigned.

In our model, typicality evaluation generates a force that squeezes each category toward its
mode. This is critically different from previous models (e.g. Pierrehumbert, 2001, 2002; Wedel,
2004, 2006, 2012; Tupper, 2015; Wedel & Fatkullin, 2017), in which the equivalent force (due to
entrenchment ; see Section S4) squeezes each category toward its mean. We believe that squeez-
ing toward the mode is superior to squeezing toward the mean, for two reasons. Consider the
case of partially overlapping categories with short tails in the overlapping region (as created by
the discriminability evaluation). Firstly, since the mode of each category is located closer to the
overlapping region than the mean, squeezing toward the mode will push categories away from each
other less than squeezing toward the mean. Thus, squeezing toward the mode will maintain cate-
gory overlap better than squeezing toward the mean, in line with the model desideratum. Secondly,
if the squeezing force grows superlinearly with the distance from the center (mode or mean), then
squeezing toward the mode will shorten the short tail less than squeezing toward the mean, since
the short tail is closer to the mode than it is to the mean (and vice-versa for the long tail). Thus,
squeezing toward the mode will resist increasing category skewness better than squeezing toward
the mean, in line with the model desideratum for maintenance of shape.3

S1.2.9 Storage

If the token passes both the discriminability evaluation and the typicality evaluation, it is stored
and overwrites a random exemplar of the same type in the exemplar space. All exemplars are
stored with the same strength, which does not decay over time. A similar approach is taken in the
models presented by Wedel (2004) and Harrington et al. (2018). If the token fails an evaluation, it
is not stored. Averaged over many runs, this is equivalent to storing all exemplars with a strength
determined by their discriminability and typicality probabilities.

S1.3 Varying discriminability threshold

In the investigation in Sections 5.4–5.5 of the paper, we set discriminability threshold (δ) to be a
linear function of type frequency (f):

δ(f) =

[
λ+

(
2(f − 1)

M − 1
− 1

)
φ

]1
0

(S13)

where M is a constant representing the maximum type frequency in the system (here M = 12) and
where [x]10 evaluates to 0 if x < 0, 1 if x > 1, and x otherwise. We set a ceiling at δ = 1 because
δ > 1 would imply a disadvantage for real words in the recognition of phonetically ambiguous
stimuli (contra Ganong, 1980). We set a floor at δ = 0 because it represents the limit case where
tokens pass the discriminability threshold regardless of the activations they incite.

We varied the parameter λ in Equation (S13) across 3 values, corresponding to the original
(constant) values of δ given in Table S3: for parameter sets (1)-(6), we set λ = 0.25; for parameter

3A reviewer asks about overlapping categories that are naturally skewed, such as voiced and voiceless word-initial
stops in English (along the VOT dimension). Our model at present is designed to prevent excessive skewness, so it
would not be appropriate for such situations, but future work could look at extensions. For example, skewness could
be promoted by introducing external articulatory forces that are asymmetric with respect to acoustic value, such as
a bias against prevoicing. Nevertheless, under the assumption that naturally skewed categories do not become more
skewed as they change, squeezing toward the mode is still superior to squeezing toward the mean.
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sets (7)-(12), we set λ = 0.50; and for parameter sets (13)-(18), we set λ = 0.75. In each case, we
varied the parameter φ across 5 values, ranging from 0 to 1.0 in steps of 0.25. This yielded the
15 discriminability functions shown in Figure 9A of the paper, each of which was applied to the
corresponding group of 6 parameter sets from Table S3.

S1.3.1 Mechanisms that could derive discriminability asymmetries

By setting the discriminability threshold to vary with type frequency in this way, we introduce
an assumption that high-frequency types pass the discriminability threshold more easily than low-
frequency types. While this assumption is justified by results in the literature (discussed in Section
5.3 of the paper), its implementation – directly varying the discriminability threshold, δ, with
type frequency – does not follow from anything else within the exemplar-based framework. In this
section, we outline two theoretically-justified mechanisms from which the assumption could emerge,
and we discuss their implications for frequency-based asymmetries in the typicality evaluation.

Under the first mechanism, when an incoming token is perceived, the activation of exemplars
is weighted by their structural compatibility with the token (their similarity in phonological frame
identity) in addition to their position within the activation window (their similarity in acoustic
quality of the target phoneme).4 Such weighting represents a recognition of the fact that the
exemplar space is multidimensional, with dimensions corresponding to the phonological frame as
well as the quality of the target category realization (Pierrehumbert, 2002). Thus, the token “map”
would activate an exemplar of the type map with a given F1 value more than an exemplar of the type
pat with the same F1 value; exemplars of map would receive an activational boost from their high
structural compatibility with the token “map” (proportional to their position within the activation
window). Because a high-frequency type is represented by more exemplars than a low-frequency
type, its category receives more of these activational boosts than it would in an equivalent situation
with a low-frequency type, yielding greater expected category activation for high-frequency types
than for low-frequency types. The ratio of category activations is thus expected to be greater for
a high-frequency type than for a low-frequency type, making it easier to pass the discriminability
evaluation. A consequence of this mechanism is that the greater expected category activation for
high-frequency types also makes them more likely to pass the typicality evaluation.

Under the second mechanism, high- and low-frequency types project activation windows of
different sizes. In defining the exemplar-based Generalized Context Model, Nosofsky (1986, p. 41)
states that the perceptual sensitivity parameter5, c, (inversely related to our activation window size
parameter, α) “would be expected to increase... as subjects gained experience with the stimuli”.
Thus, the perception of a token of a high-frequency type is expected to draw on fewer exemplars
that are far from the token in the perceptual-acoustic space than the perception of a token of a
low-frequency type. Consequently, the activations of both the intended and the other category
are expected to be lower for a token a high-frequency type than for an equivalent token of a low-
frequency type; in particular, the activation of the other category is expected to be very small for
a token of a high-frequency type relative to a token of a low-frequency type, since most exemplars

4Exemplars may also be weighted by their contextual similarity with the token more generally. Weighting according
to the broad context provided by talker or situation may generate perceptual adaptation effects, where the listener
rapidly adjusts perceptual expectations and representations while listening (Norris et al., 2003; Kraljic & Samuel,
2006; Bradlow & Bent, 2008; Clarke-Davidson et al., 2008; Dahan et al., 2008).

5The sensitivity parameter is assumed by Nosofsky (1986) to be constant across all types experienced by a given
subject, but it could plausibly be extended to vary across types, given that exemplar-based models assume that expe-
rience is accrued in a type-specific manner (Pierrehumbert, 2002). Indeed, Nosofsky (1991) considers the equivalent
of such an extension and finds that it gives superior description of human recognition data (in the visual mode),
though not of classification data.
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of the other category are located far from the average token of the intended category. Thus, the
ratio of activations (intended/other) would generally be greater for high-frequency types than for
low-frequency types, making it easier to pass the discriminability evaluation. A consequence of this
approach is that the lower expected category activation for high-frequency types would make them
less likely to pass the typicality evaluation.

What do we make of the different implications for asymmetries in the typicality evaluation?
In Section S3.1, we discuss results from the literature suggesting that tokens of high-frequency
types are stored in memory less robustly than tokens of low-frequency types, and how that can
be incorporated in our model as an assumption that tokens of high-frequency types are less likely
to pass the typicality evaluation than tokens of low-frequency types. We also present results of
additional simulations showing that such an asymmetry in typicality evaluation reinforces the
effects of the asymmetry in discriminability evaluation that we have discussed in Section 5.5 of the
paper. These results are consistent with the second mechanism we have presented here (frequency-
sensitive activation windows) and highlight how mechanistic assumptions have the potential to
unify different perceptual effects.

At present, we have not incorporated either of the mechanisms presented here into our model,
but we believe that doing so (either separately or together) could be fruitful for future research.
However, we caution that such incorporation will require a great deal of care, since the different
mechanisms have different implications for asymmetries in the typicality evaluation, and potentially
more broadly. Ultimately, both mechanisms may be relevant, and future research will have to
determine how they can work together without interfering with each other.

S2 Parameter tuning

S2.1 Tuning for single-category movement: approach

We illustrate our approach to parameter tuning for the single-category case in Figure S2. The
general strategy was to pre-determine values for the initial category width, σ, and then choose
values for the other parameters so as to obtain category movement with maintenance of category
shape and width.

We pre-determined three values for σ, representing narrow (σ = 0.6), medium-width (σ = 0.8),
and wide (σ = 1.0) distributions. We fixed the activation window size, α, to be half the width of
the category, σ, reflecting the observation that perception should draw on neither too many nor
too few exemplars within a category. Thus, for σ = 0.6, we set α = 0.3; for σ = 0.8, we set α = 0.4;
and for σ = 1.0, we set α = 0.5. Fixing α in this way is not problematic because its role is to
provide a perceptual scale, moderating the effect of the typicality threshold, τ , on the typicality
force.

The goal of parameter tuning is to balance the three forces described in Sections 2.4 and 4.1
of the paper: the intrusive bias force, the spreading imprecision force, and the squeezing typicality
force. Balancing the forces in this way will allow us to identify regimes that meet the desiderata
of generating category movement while maintaining category shape and width. This can be ac-
complished by adjusting two forces while keeping the other one fixed (providing the scale), because
what matters for the qualitative dynamics of the system is the size of each force relative to the
others. We therefore pre-determined three values for the bias size, β, yielding three different (fixed)
strengths of the bias force: weak (β = 0.05), medium-strength (β = 0.15), and strong (β = 0.25).

These decisions gave us 9 sets of partially-established parameter values (one for each combina-
tion of σ, and β), with two parameters to tune: τ , which determines the strength of the typicality
force; and ι, which determines the strength of the imprecision force. We tuned these parameters
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Figure S2: Illustration of the parameter-tuning process for single-category movement. The initialization parameter
σ (blue box) was set to several values to define the objectives of the modeling process. The activation window size
parameter α (red box) was arbitrarily fixed to σ/2 to provide a scale (without loss of generality). The bias size β
(black boxes) was set to pre-defined (controlled) values. The other relevant parameters, typicality threshold τ and
imprecision degree ι (green boxes) were tuned in order to meet the desiderata of maintaining category width and
shape.

by varying them independently among 10 values each, with τ ranging from 0.02 to 0.20 in steps of
0.02 and ι ranging from 0.1 to 1.0 in steps of 0.1. The smallest value of τ represented a requirement
for the activation incited by a token to be 2% of the maximum possible in order to be stored with
probability 0.5, and the largest value represented a requirement for the activation incited by a
token to be 20% of the maximum possible in order to be stored with probability 0.5. The smallest
value of ι represented a degree of imprecision that could shift the target by up to 6% of the span
of a category in either direction (in a wide-category parameter combination), and the largest value
represented a degree of imprecision that could shift the target by up to the entire span of a category
(in a narrow-category parameter combination).

For each of the 100 pairs of values of τ and ι and each of the nine pairs of values of σ (and
corresponding value of α) and β, we ran the model 100 times for 5000 iterations (enough to indicate
the equilibrium state). For each value of σ, we chose a value of τ that resulted in a stable shape
of the exemplar distribution which was minimally different to the initial shape (i.e. had a minimal
increase in kurtosis) and allowed the category to shrink or grow depending on ι; in each case, we
chose τ = 0.10. Then, for each value of pair of values of σ and τ , we chose the values of ι that best
maintained category width and shape (skewness and kurtosis). For σ = 0.6, we chose ι = 0.3; for
σ = 0.8, we chose ι = 0.4; and for σ = 1.0, we chose ι = 0.5.

S2.2 Tuning for single-category movement: results

We summarize the results of the single-category tuning in Table S2 (for initial category properties,
see Table S1).

The tuning process allowed us to confirm that parameter choice had the expected implications
for category properties. For example, category displacement grew approximately linearly with bias
(β), independent of category width (initial value σ), imprecision degree (ι), activation window size
(α), and typicality threshold (τ). Increasing bias also increased category skewness, as exemplar
movement under bias became more extreme relative to what might be expected under imprecision.
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Table S2: Tuned parameter values and average category properties for a single category after 5000 iterations. Dis-
placement measures the distance traveled by the category centroid.

Parameters Category properties

σ β ι α τ Displacement Width Skew Ex. Kurtosis

0.6 0.05 0.3 0.3 0.10 0.35 0.59 −0.12 −0.48

0.8 0.05 0.4 0.4 0.10 0.35 0.79 −0.09 −0.46

1.0 0.05 0.5 0.5 0.10 0.32 0.97 −0.07 −0.49

0.6 0.15 0.3 0.3 0.10 1.03 0.61 −0.33 −0.20

0.8 0.15 0.4 0.4 0.10 1.06 0.79 −0.23 −0.34

1.0 0.15 0.5 0.5 0.10 1.04 0.99 −0.21 −0.37

0.6 0.25 0.3 0.3 0.10 1.68 0.64 −0.47 −0.21

0.8 0.25 0.4 0.4 0.10 1.69 0.83 −0.35 −0.08

1.0 0.25 0.5 0.5 0.10 1.72 1.01 −0.28 −0.26

A corresponding effect was observed for category excess kurtosis: as the category became skewed
under high bias, it also became more dispersed.

The tuning process also allowed us to identify relationships between parameter values that are
necessary for meeting our desiderata. For example, both ι and τ are required to be sufficiently large
relative to β in order to prevent the category becoming excessively skewed under the application
of production bias. When ι is small relative to β, little of the variation in production can be
attributed to imprecision, meaning that the effect of bias is very clear. When τ is small relative to
β, few extreme tokens are discarded for being atypical, meaning that bias is permitted to continue
unchecked in the creation of extreme tokens. It is a consequence of this result that, for given values
of ι and τ , category skewness increases with β. In addition, an increase in ι requires a concomitant
increase in τ in order to maintain category shape, and vice-versa. When ι is too large relative to
τ , the category becomes wider, and vice-versa when it is too small. This result reflects the careful
balance required between the imprecision and typicality forces.

S2.3 Tuning for two-category interaction: approach

Our approach to parameter tuning for two-category interaction was very similar to the approach for
single-category movement. The general strategy was to pre-determine values for the initial category
width, σ, and initial category distance, µ, and then choose values for the other parameters so as to
obtain interactions exhibiting maintenance of category shape, width, distance, and overlap, building
on the existing results for single-category movement. We illustrate our approach to parameter
tuning for two-category interaction in Figure S3.

We used the same three pre-determined values for σ as in the single-category case, representing
narrow (σ = 0.6), medium-width (σ = 0.8), and wide (σ = 1.0) distributions. We also fixed α in
the same way as in the single-category case, setting α = 0.3 for σ = 0.6, α = 0.4 for σ = 0.8, and
α = 0.5 for σ = 1.0. We pre-determined two values for µ for each value of σ, representing two
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Figure S3: Illustration of the parameter-tuning process for two-category interaction. The initialization parameters
σ and µ (blue boxes) were set to several values to define the objectives of the modeling process. The activation
window size parameter α (red box) was arbitrarily fixed to σ/2 to provide a scale (without loss of generality). The
discriminability threshold δ (black boxes) was set to pre-defined (controlled) values. The other parameters (τ , ι, β;
green boxes) were tuned in order to meet the objectives of the modeling process, in two steps. In the first step,
we drew on our simulations of a single category with a range of values of ι and τ to choose a value of τ yielding
maintenance of category shape alongside a range of non-decreasing category widths (for different values of ι). In
the second step, we simulated two interacting categories with a range of values of ι and β and chose the value of
ι that yielded best maintenance of category width and distance and the value of β that additionally yielded best
maintenance of category overlap.
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different category distances and degrees of category overlap.6 For σ = 0.6, we set µ ∈ {2.1, 1.9};
for σ = 0.8, we set µ ∈ {3.0, 2.8}; and for σ = 1.0, we set µ ∈ {3.9, 3.7}. While these initialization
parameters contribute to the initial behavior of the model – causing, for example, greater initial
discriminability force when the overlapping region is initially dense – they have little impact on
the long-term dynamics of the model. They thus help to identify cases where the objective of the
model has been met, as opposed to affecting the processes that allow this objective to be met.7

As in the single-category case, the goal of parameter tuning is to balance forces; to the three
forces from the single-category case, the two-category case adds the repulsive discriminability force.
To balance four forces, one can be fixed while the others are adjusted. We pre-determined three
values for the discriminability threshold, δ, yielding three different (fixed) strengths of the discrim-
inability force: weak (δ = 0.25), medium-strength (δ = 0.50), and strong (δ = 0.75). We did this in
order to control discriminability across parameter combinations, so that we could explore the effect
of manipulating it consistently with type frequency later (see Section S1.3). The three values of δ
we chose were all less than 1, yielding higher discriminability (of intended types) than would be
expected based on activations alone; this follows the fact that phonetically ambiguous tokens are
biased towards being recognized as real words rather than non-words (Ganong, 1980).

These decisions gave us 18 sets of partially-established parameter values (one for each combi-
nation of σ, µ, and δ), with three parameters to tune: β, which determines the strength of the
bias force; ι, which determines the strength of the imprecision force; and τ , which determines the
strength of the typicality force.

We drew upon our previous single-category simulations to choose a suitable value for τ and
a suitable range of values for ι, thus identifying potential typicality and imprecision forces. We
retained the value of τ that allowed for best maintenance of category shape (τ = 0.10). Then,
for each pair of values of σ and τ , we chose 4 values of ι which yielded a range of category
widths, from no increase over time to an increase of up to 50% over time. For σ = 0.6, we chose
ι ∈ {0.4, 0.5, 0.6, 0.7}; for σ = 0.8, we chose ι ∈ {0.5, 0.6, 0.7, 0.8}; and for σ = 1.0, we chose
ι ∈ {0.6, 0.7, 0.8, 0.9}. We chose such a range for ι because we reasoned that the addition of the
discriminability force in the move to a two-category system was likely to favor additional narrowing
of categories, which we needed to counter in order to meet our desiderata.

Finally, we used two-category simulations for each parameter set to narrow down to a single
value of ι and identify a suitable value of β, thus completing the balancing of forces. For each value
of σ, we considered the 4 values of ι obtained from the single-category tuning process alongside
25 values of β. The values of β ranged from 0.01 to 0.25 in steps of 0.01. The smallest value of
β represented a consistent bias approximately equal to 0.2% of the span of a category (in a wide-
category parameter combination), and the largest value represented a bias approximately equal to
8.5% of the total span of a category (in a narrow-category parameter combination).

For each of the 100 pairs of values of β and ι, each of the 3 values of δ, and each of the 6
pairs of values of σ and µ (and corresponding value of α), we ran the model 100 times for 5000

6The values of µ were chosen to yield the same span of the overlapping region in absolute terms (i.e. 0.6 and 0.8
units), regardless of the category width. This means that, for narrower categories, a larger proportion of the category
distribution was located in the overlapping region.

7There is nothing special about our pre-determination of σ and µ; we do not intend to suggest that these are the
only values that are appropriate for the model. Every combination of the other parameters yields some equilibrium
behavior of the system, many of which (i.e. those in which the shape of category distributions does not greatly
change) correspond to some combination of σ and µ. However, not every such equilibrium behavior will meet our
model desiderata, both in the sense of corresponding to the behaviors we are attempting to model (e.g. some will
reflect mutual repulsion of categories) and in the sense of demonstrating appropriate properties (e.g. some will not
permit a large degree of category overlap). We chose specific values of σ and µ that would allow us to meet the model
desiderata, but there are many other values which would also do so.
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Table S3: Tuned parameter values for two-category interaction.

Set σ µ β ι α δ τ

(1) 0.6 2.1 0.08 0.5 0.3 0.25 0.10

(2) 0.6 1.9 0.10 0.5 0.3 0.25 0.10

(3) 0.8 3.0 0.06 0.6 0.4 0.25 0.10

(4) 0.8 2.8 0.08 0.6 0.4 0.25 0.10

(5) 1.0 3.9 0.05 0.7 0.5 0.25 0.10

(6) 1.0 3.7 0.07 0.7 0.5 0.25 0.10

(7) 0.6 2.1 0.12 0.5 0.3 0.50 0.10

(8) 0.6 1.9 0.16 0.5 0.3 0.50 0.10

(9) 0.8 3.0 0.08 0.6 0.4 0.50 0.10

(10) 0.8 2.8 0.12 0.6 0.4 0.50 0.10

(11) 1.0 3.9 0.12 0.8 0.5 0.50 0.10

(12) 1.0 3.7 0.15 0.8 0.5 0.50 0.10

(13) 0.6 2.1 0.20 0.6 0.3 0.75 0.10

(14) 0.6 1.9 0.25 0.6 0.3 0.75 0.10

(15) 0.8 3.0 0.16 0.7 0.4 0.75 0.10

(16) 0.8 2.8 0.21 0.7 0.4 0.75 0.10

(17) 1.0 3.9 0.14 0.8 0.5 0.75 0.10

(18) 1.0 3.7 0.19 0.8 0.5 0.75 0.10

iterations (enough to indicate the equilibrium state). For each set of values of σ, µ, and δ, we chose
the value of ι and a set of values of β yielding best maintenance of category width and distance
(allowing slight increases in width and decreases in distance if strict maintenance fell outside the
range of parameter values considered). From the set of values of β thus obtained, we chose the one
that yielded best maintenance of category overlap (assessed in terms of the area between the two
category distributions; this consistently resulted in maintenance or increase of the total span of the
overlapping region).

S2.4 Tuning for two-category interaction: results

As described above, we selected one value of each of τ , β, and ι for each set of values of σ, µ, and δ
(and corresponding value of α), so as to obtain maintenance of category shape, width, distance, and
overlap. This gave 18 sets of parameter values that yielded suitable category interactions. These
parameter values are given in Table S3. The average properties of the interactions obtained under
these sets of parameter values (after 5000 iterations) are given in Table S4.

16



Table S4: Average properties of the interactions obtained under the sets of parameter values in Table S3 after 5000
iterations. Overlap measures the span of the overlapping region between categories (i.e. the distance between the most
advanced Pusher exemplar and the least advanced Pushee exemplar). Pushee displacement measures the distance
traveled by the Pushee centroid (i.e. the size of the push).

Pushee Pusher

Set Category dist. Overlap Displacement Width Skew Ex. Kurtosis Width Skew Ex. Kurtosis

(1) 2.09 0.80 0.08 0.62 0.12 −0.56 0.61 −0.17 −0.54

(2) 1.91 0.96 0.11 0.61 0.11 −0.54 0.60 −0.18 −0.52

(3) 3.01 0.85 0.07 0.81 0.10 −0.57 0.81 −0.12 −0.56

(4) 2.81 1.00 0.10 0.80 0.11 −0.55 0.80 −0.15 −0.55

(5) 3.91 0.88 0.05 1.01 0.10 −0.57 1.00 −0.09 −0.57

(6) 3.69 1.03 0.07 1.00 0.11 −0.57 0.99 −0.12 −0.56

(7) 2.08 0.68 0.12 0.60 0.15 −0.55 0.58 −0.23 −0.50

(8) 1.90 0.83 0.17 0.59 0.14 −0.53 0.57 −0.26 −0.45

(9) 3.02 0.67 0.11 0.80 0.13 −0.57 0.79 −0.17 −0.56

(10) 2.80 0.82 0.14 0.78 0.14 −0.55 0.77 −0.21 −0.51

(11) 3.87 0.80 0.11 1.02 0.14 −0.57 1.00 −0.18 −0.55

(12) 3.68 0.95 0.15 1.01 0.14 −0.57 0.99 −0.21 −0.53

(13) 2.10 0.67 0.18 0.62 0.17 −0.54 0.59 −0.30 −0.45

(14) 1.94 0.83 0.23 0.61 0.15 −0.51 0.57 −0.32 −0.39

(15) 2.99 0.68 0.17 0.81 0.16 −0.55 0.79 −0.25 −0.50

(16) 2.79 0.83 0.21 0.80 0.16 −0.54 0.77 −0.28 −0.46

(17) 3.89 0.67 0.14 1.00 0.14 −0.58 0.99 −0.21 −0.54

(18) 3.67 0.81 0.19 0.99 0.15 −0.57 0.96 −0.25 −0.50
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As in the single-category case, the tuning process revealed that certain relationships between
parameters were required in order to meet our desiderata. For example, the imprecision force was
required to be substantially large (ι near σ in value) in order to maintain category width. It is
imprecision that allows targets to be produced outside of the existing exemplar distribution for
a given category, facilitating the retreat of the Pushee. Such facilitation is only possible if the
imprecision force is large enough to overcome the typicality force. This conclusion is reinforced
by the fact that the value of ι chosen in the tuning process for two-category interactions was
consistently larger than the value chosen in the tuning process for single-category movement.

Similarly, greater bias force (higher values of β) was required to maintain smaller category
distances (smaller values of µ). It is the bias force that causes the Pusher to move toward the
Pushee, countering the repulsion due to the discriminability force, and nearer categories have
denser overlapping regions and thus greater discriminability force. Consistent with this observation,
greater bias force was also required when the discriminability threshold was higher (higher values
of δ), yielding greater discriminability force.

Finally, the tuning process highlighted the generality of the model’s ability to meet our desider-
ata. The tuning process began with arbitrary decisions of values for σ, µ, α, and δ. That these
decisions did not limit our ability to identify sets of parameter values that allowed us to meet
our desiderata suggests that there are many such suitable sets of parameter values. Furthermore,
the model was not highly sensitive to the particular value of some tuned parameters. For example,
slightly larger values of τ and ι would have yielded similar category shapes and widths to the values
chosen, and thus would also have been appropriate.

S3 Additional simulations

In various parts of the paper, we indicated a number of additional kinds of simulations that we had
conducted to back up claims about the model’s dynamics. In this section, we present the details
and results of these simulations.

S3.1 Varying the typicality threshold

In the literature, there is ample evidence that tokens of low-frequency words are generally stored
in memory more robustly than tokens of high-frequency words, and consequently have greater
potential to impact the perceptual system post-exposure. Relative to high-frequency words, low-
frequency words: are more easily recognized as repeated or non-repeated (Schulman, 1967); are
rated as more memorable (Benjamin, 2003); benefit more from prior study in identification tasks
(Wagenmakers et al., 2000); yield more repetition priming (Forster & Davis, 1984), which spans
modalities (Bowers, 2000) and operates regardless of other attentional demands (Kinoshita, 1995);
inhibit the recognition of phonetically similar words more in phonetic priming (Goldinger et al.,
1989); elicit greater activation in memory-sensitive brain regions when studied (Chee et al., 2004);
and may attract attention more, yielding larger attentional blinks and less disruption from atten-
tional blinks (Wierda et al., 2013), and requiring more processing resources to be encoded episod-
ically (Diana & Reder, 2006). In this section, we show that encoding this perceptual asymmetry
in the typicality evaluation – by setting the typicality threshold, τ , to be an increasing function
of type frequency – causes high-frequency types to change faster than low-frequency types in the
Pusher and slower than low-frequency types in the Pushee, reinforcing the effects of varying the
discriminability threshold with type frequency.

To introduce frequency-based asymmetries in typicality, we set the typicality threshold (τ) to
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be a linearly increasing function of type frequency (f):

τ(f) =

[
κ−

(
2(f − 1)

M − 1
− 1

)
ψ

]+
(S14)

where, as in the definition of δ functions (Equation (S13)), M is a constant representing the
maximum type frequency in the system (here M = 12) and where [x]+ evaluates to 0 if x < 0
and to x otherwise. We set a floor at τ = 0 because it represents the limit case where tokens
are never discarded for being atypical, and thus are stored whenever they pass the discriminability
threshold. We refer to κ as a measure of the average acceptability of atypical tokens; as κ increases,
atypical tokens are less likely to be accepted overall on average. We refer to ψ as a measure of
the frequency-based asymmetry in the acceptability of atypical tokens; as ψ increases, tokens of
low-frequency types are more likely to be accepted relative to equivalent tokens of high-frequency
types.

We varied κ across 3 values: 0.1 (the original value of τ used in all simulations in the paper),
0.2, and 0.3. We varied ψ across 5 values: 0 (no asymmetry, as in all simulations in the paper), 0.05,
0.1, 0.2, and 0.3. Together, this gave us 15 τ functions, illustrated in Figure S4A. We conducted
simulations applying these τ functions to 2 parameter sets with different δ functions from our
original runs in Section 5 of the paper: one with δ defined by λ = 0.25 and φ = 0.25, and one
with δ defined by λ = 0.75 and φ = 0 (the other parameters in each case were taken from the
corresponding entries in Table S3 with σ = 0.8 and µ = 2.8, i.e. parameter sets (4) and (16)
respectively).

In Section 5.5 of the paper, (λ, φ) = (0.25, 0.25) generated an expected frequency effect (low-
frequency type advantage in the Pushee), while (λ, φ) = (0.75, 0) generated a reversed frequency
effect. We show that treating τ as a function of type frequency removes the reversed frequency
effects. For each τ function and each parameter set, we ran the model 1000 times for 5000 iterations
each. The results of the simulations are shown in Figure S4B.

As can be seen, with even a small asymmetry in the typicality threshold favoring the accep-
tance of atypical tokens of low-frequency types, the reversed frequency effects observed under some
parameter settings in Section 5.5 of the paper (i.e. with insufficient asymmetries in discriminabil-
ity evaluation) disappear. The introduction of typicality asymmetries also strengthens frequency
effects that stem from discrimability asymmetries.

We note that the reversed frequency effects are also removed simply by increasing τ (i.e. de-
creasing the acceptability of atypical tokens) in the absence of frequency-based asymmetries. This
result follows – perhaps counterintuitively – from the fact that high-frequency types are more sen-
sitive to perceptual forces than low-frequency types, as a consequence of our assumptions about
production and storage (see Appendix B of the paper). Increasing τ increases the squeezing typ-
icality force. Since high-frequency types are more sensitive to this increase, the high-frequency
sub-distribution is squeezed more than the low-frequency sub-distribution, causing it to evacuate
the overlapping region between categories more. Being further from the overlapping region, the
high-frequency sub-distribution is subjected to a lower repulsive discriminability force – but, due
to its high sensitivity to this force, it experiences a push of a similar size to that experienced by
the low-frequency sub-distribution. The counteracting of discriminability and typicality in this
way removes the reversed frequency effect. In the same way, increasing τ more generally causes
discriminability-based frequency effects to become less pronounced.
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Increasing acceptability of atypicality for LF types relative to HF types

(B)

Figure S4: Details and results of treating typicality threshold (τ) as a function of type frequency. (A) τ functions
investigated (black lines). Lower τ indicates greater acceptability of atypical tokens. Across all panels in a given row,
τ is kept constant for median-frequency types (dashed green lines). This median-frequency τ decreases moving up the
rows, making acceptability of atypical tokens higher on average. Across all panels in a given column, the difference
between τ for low-frequency types and τ for high-frequency types (slope) is kept constant. This difference increases
(slope steepens) moving rightward across the columns, making low-frequency types increasingly more acceptable
when atypical than high-frequency types. (B) Results of varying typicality threshold (τ) with type frequency for 2
different sets of parameter values. The vertical axis shows the extent to which high-frequency types are ahead of
low-frequency types in the Pushee, averaged over 1000 runs for each parameter setting (blue curve). A positive slope
represents a faster rate of change of high-frequency types compared to low-frequency types. As in (A), panels are laid
out according to τ function. Moving rightward across the columns, low-frequency types become increasingly more
acceptable when atypical than high-frequency types. This shifts the end of the curve downward, causing negative-
sloping sections where high-frequency types change at a slower rate than low-frequency types. This effect is present
for all choices of average acceptability of atypical tokens.
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Figure S5: Results of simulations illustrating how the size of the system (solid: 492 exemplars, as in all simulations
in the paper; dashed: 984 exemplars, 2x the amount in all simulations in the paper) affects its rate of evolution.
For both the centroid (left) and the frequency effect (right) of the Pushee, the system from the paper evolves at
approximately twice the rate of a system with twice as many exemplars, i.e. it takes only half as many iterations to
reach the same value.

S3.2 Increasing the number of types

In Section 3.1.2 (footnote 8) of the paper, we stated that the rate of evolution of the system is
approximately inversely proportional to the number of exemplars it contains. Here, we present the
results of simulations that further support the statement; we show that doubling the number of
types (and hence, the number of exemplars) causes the system to evolve about half as quickly. We
provide further mathematical discussion of the relationship between rate of evolution and number
of exemplars in Section S5.2.3.

We created a system with twice as many exemplars by duplicating the contents of each category
in the initialization file. We ran 1000 models for 5000 iterations each, using parameter set (10)
from Table S3 and a value of 0.50 for φ, such that δ decreased linearly from a value of 1 for the
lowest-frequency types to a value of 0 for the highest-frequency types.

Figure S5 shows the results of the simulations. As can be seen, the system with twice as many
exemplars evolved at approximately half the rate, with respect to both the movement of categories
(as represented by the Pushee centroid) and the internal organization of categories (as represented
by the Pushee frequency effect).

S3.3 Changing bias

In the paper, we focused on the centrality of the listener to sound change. However, the speaker
also plays a role. We stated that the primary role of the speaker in the present model is to ensure
that category interaction is persistent, while making minimal contributions to frequency effects in
this interaction (relative to the listener).

In this section, we present two sets of simulations where we varied the application of production
bias in order to support the statement that the speaker is not as important as the listener for
generating frequency effects in the model. We first present simulations where both categories
receive production bias, in which the results show that the existence of frequency effects is not
tied to overall category movement. We then present simulations where neither category receives
productions bias, in which the results show that frequency effects are also not tied to bias and
can be obtained even in the absence of speaker influence. In both cases, we continue to refer
to the categories as “Pushee” and “Pusher” to allow comparison with our other results. These
names should only be taken as convenient, not as indicating the kind of movement exhibited by
the category or the bias to which it is submitted.
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Figure S6: Results of simulations involving two categories biased together (solid line) or a single Pusher category
biased toward the other (dashed line), showing the centroid (left panel) and the frequency effect (right panel) of the
Pushee. While the centroid hardly moves in the case with two categories biased together, a robust frequency effect
is still observed, which is at least as large as the effect observed when just the Pusher is biased.

S3.3.1 Categories biased together

To demonstrate that the model’s results on frequency effects stem from the internal reorganization
of categories due to perceptual asymmetries, rather than from the movement of categories due to
the application of production biases, we conducted simulations in which the two categories were
biased together (to the same extent). To accomplish this, we subjected the Pusher to a positive
bias that was half the size of that in Section 5 of the paper and the Pushee to a negative bias
of the same magnitude. We ran 1000 models for 5000 iterations each, using parameter set (10)
from Table S3 and a value of 0.50 for φ, such that δ decreased linearly from a value of 1 for the
lowest-frequency types to a value of 0 for the highest-frequency types.

In these simulations, both the Pushee and the Pusher stayed approximately still (with slight
movement of the centroids due to reversion to the modes, which were slightly off-centered in the
initialization data). The results for the Pushee are shown in Figure S6. As can be seen, while
biasing the categories together results in almost no overall movement, it still yields a Pushee
frequency effect: high-frequency types in the Pushee become peripheral slower than low-frequency
types. This frequency effect is at least as large as the effect observed when just the Pusher is biased.

The fact that a frequency effect is observed even without category movement implies that
the frequency effects predicted by the model are not dependent on category movement. Rather,
frequency effects arise as a result of internal reorganization of categories to balance forces from
production and perception, as discussed in Section 5.5 of the paper. The fact that the same kind
of frequency effect is obtained under two qualitatively different kinds of production force implies
that it is driven by the perceptual forces, i.e. by processes in the listener rather than the speaker.

S3.3.2 No bias

Having established that the model’s results on frequency effects are independent of category move-
ment due to production bias, we conducted further simulations to demonstrate that they are in-
dependent of production bias altogether. To accomplish this, we removed the bias entirely, such
that neither category was biased in any way. We ran 1000 models for 5000 iterations each, using
parameter set (10) from Table S3 – with the exception that β = 0 – and a value of 0.50 for φ, as
before.

In these simulations, the Pushee and the Pusher were repelled from one another, and gradually
drifted apart. This repulsion was caused by the discriminability force, which caused perceptual
downweighting of tokens produced near the region of category overlap. Its gradualness was a result
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Figure S7: Results of simulations involving two categories without bias (solid line) or a single Pusher category biased
toward the other (dashed line), showing the centroid (left panel) and the frequency effect (right panel) of the Pushee.
While the removal of bias causes decreased centroid movement, it does not affect the frequency effect.

of the typicality force, which caused similar downweighting of tokens produced far from the mode
of each category. Taken together, these two forces yield the hyperspace effect (Johnson et al., 1993):
from the listener’s perspective, the optimal production target for a category is hyperarticulated –
i.e. located further away from other categories than the mode – but not so much as to no longer
resemble natural speech.

The results for the Pushee are shown in Figure S7. As can be seen, the degree of repulsion
decreases in the absence of Pusher bias as the two categories separate, yielding less category move-
ment over time. However, the frequency effect appears to be unaffected: high-frequency types
change slower than low-frequency types in the Pushee, regardless of whether there is production
bias in the system or not. The fact that frequency effects are still observed even when production
bias is removed confirms that such results in the model follow from the listener, not the speaker.
The role of the speaker is to enable prolonged category interaction, by counteracting the repulsion
of the Pusher with production bias – but interaction does not have to be prolonged in this way in
order for categories to internally reorganize and display frequency effects.

S3.4 Adding minimal pairs

In the paper, all of our simulations involved the simplifying assumption that there are no mini-
mal pairs in the system. We argued (in Appendix A.2) that minimal pairs could not be driving
empirically-observed category movements and frequency effects, since such effects are seen across
the lexicon, in which most words do not participate in a relevant minimal pair. Our argument can
be broken into two sub-arguments: firstly, that minimal pairs do not make necessary contributions
to any part of modeling empirically-observed category movements and frequency effects; and sec-
ondly, that minimal pairs alone are not sufficient to generate these movements and effects. In this
section, we present an extension of the model to include minimal pairs, together with additional
simulations from this extended model, to support our arguments.

S3.4.1 Modeling minimal pairs

There are two options for introducing minimal pairs into the model, differentiated based on the
assumed influence of higher-level (syntactic, semantic, pragmatic, or discourse) context. Under the
first, context-sensitive option, higher-level context has a large influence: it uniquely determines the
intended type even when the phonological frame is consistent with multiple types. The listener
operates as in the present model, storing the token as an exemplar of the intended type if it passes
the discriminability and typicality evaluations, and discarding it otherwise. Consequently, there is
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no potential for variant trading (Blevins & Wedel, 2009), where the listener mistakenly stores a
token of one type as an exemplar of another type. Under the second, context-insensitive option,
higher-level context has no influence: when the phonological frame is consistent with multiple
types, the context can never uniquely determine which type was intended. The listener considers
all possible types that are consistent with the phonological frame, including those corresponding to
nonwords, and chooses one probabilistically based on category activation and type frequency. The
token is stored as an exemplar of the winning type if it passes the typicality evaluation and if the
type corresponds to a real word; thus, variant trading is possible.

Within the framework of the model, the context-sensitive option is more conservative because
it does not permit variant trading; in every other respect, the two options are mathematically
equivalent. Without variant trading, all that introducing minimal pairs does is effectively raise
the discriminability threshold. Recall that the threshold was stated to be low (δ < 1) due to the
existence of lexical bias (Ganong, 1980) toward the intended type, making it relatively easy to map
an acoustically ambiguous token to the intended type. With the introduction of minimal pairs,
the unintended type can also have such a lexical bias, introducing another plausible identity for
an acoustically ambiguous token, and thus making it harder to map such a token to the intended
type. As shown mathematically in Equation (S17), this counterveiling pressure effectively raises δ.
Since we have already explored the role of different discriminability thresholds in Sections 5.4–5.5
of the paper without invoking minimal pairs, introducing minimal pairs under the context-sensitive
option would not yield any new insight. For this reason, we chose to introduce minimal pairs under
the context-insensitive option, allowing us to explore anew the influence of variant trading on the
model’s results.

The introduction of context-insensitive minimal pairs embraces the view of the discriminability
evaluation as a probabilistic recognition process involving competition between the types (from
different categories) that are consistent with a given frame (see Section S5.1). We assume that
a token is identified as belonging to the category that wins the discriminability evaluation, and
that the discriminability evaluation fails just in case this identification yields a nonword. More
precisely, the discriminability evaluation (Equation (S10)) is replaced with a process of recognition
of the token (Equation (S15)), where a δ value is computed as before for each category according to
the corresponding type frequency (Equation (S16)). The token is passed to the typicality evaluation
if and only if it has been recognized as corresponding to a real word.

P (token recognized as Tk) =

1
δk
·Ak∑

k
1
δk
·Ak

(S15)

δk =


[
λ+

(
2(fk−1)
M−1 − 1

)
φ
]1
0

Tk corresponds to a real word

1 Tk corresponds to a nonword
(S16)

When two competing types both correspond to real words, the recognition equation can be
explicitly written out as follows:

P (token recognized as Ti) =
1
δi
·Ai

1
δi
·Ai + 1

δo
·Ao

(S17)

=
δo
δi
·Ai

δo
δi
·Ai + 1 ·Ao

(S18)

=

1
δi/δo

·Ai
1

δi/δo
·Ai + 1 ·Ao

(S19)
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It can be seen that this form is equivalent to Equation (S10), with δ = δi/δo. Since δo < 1,
it follows that this new version of δ is increased from the original value of δi it would take were
there no real word competitor, and hence that the introduction of minimal pairs effectively raises
the discriminability threshold.

S3.4.2 Minimal pairs are not necessary: simulations with a subset of minimal pairs

We begin by questioning whether minimal pairs are necessary for generating any desirable pattern
in simulations of two-category activations. We compare simulations with and without minimal
pairs to see whether the addition of minimal pairs makes new results possible or existing results
impossible.

In each model run of our simulations, we randomly changed 10% of the types in the system
to participate in minimal pairs, as an approximation to the proportion of minimal pairs in the
/æ/-/E/ interaction in New Zealand English (see Appendix A.2 the paper). In each run of the
model, we randomly chose 10 types from each category and created minimal pair relations between
them. This random pairing process removed any influence of type frequency on the results.

The addition of minimal pairs allows categories to stably exist in closer proximity to one another,
since tokens that would otherwise fail the discriminability evaluation instead participate in variant
trading. To ensure that this decreased stable distance between categories did not disrupt our
interpretation of the simulation results, we retuned the initial category distance (µ) using frequency-
insensitive discriminability thresholds (δ). Keeping all other parameters as in Table S3, we obtained
the following: for σ = 0.6, we set µ ∈ {1.8, 2.0}; for σ = 0.8, we set µ ∈ {2.6, 2.8}; and for σ = 1.0,
we set µ ∈ {3.4, 3.6}.

For each of the parameter settings in Table S3 (with µ retuned as above), we ran 1000 models
for 5000 iterations each. The average properties of the interactions obtained in models with 10%
minimal pairs under these sets of parameter values (after 5000 iterations) are given in Table S5.
As can be seen, the properties in Table S5 are highly similar to those in Table S4, indicating that
the same kinds of stable category interactions are generated with and without minimal pairs.

It is possible that the similarities between the simulations with and without minimal pairs hold
only at the coarse-grained category level and not at the fine-grained type level. To assess this
possibility, we repeated the investigation of frequency effects from Sections 5.4–5.5 of the paper in
systems involving minimal pairs. Using the 15 δ functions from Figure 9A of the paper and the 18
sets of parameter values with retuned µ, we ran the model 1000 times for 5000 iterations each. In
Figure S8, we compare frequency effects in the Pushee for models with and without minimal pairs
for parameter sets (4), (10), and (16) (with µ retuned as above).

The system with minimal pairs shows the same broad patterns in frequency effects as the system
without minimal pairs: when high-frequency types are sufficiently perceptually advantaged relative
to low-frequency types (with respect to discriminability, δ), they become more likely to cluster in
the overlapping region between categories, allowing low-frequency types in the Pushee to change at
a faster rate. Wherever a robust frequency effect of this sort exists in the system without minimal
pairs, it also exists in the system with minimal pairs.

However, the addition of minimal pairs also exacerbates the existence of reversed frequency
effects for some δ functions (lower-left panels of Figure S8), where high-frequency types in the
Pushee change at a faster rate than low-frequency types. As discussed in Appendix B of the paper,
these reversed frequency effects are the result of an interaction between our assumptions about
production and storage, which causes high-frequency types to be more sensitive to perceptual
forces than low-frequency types. Because the addition of minimal pairs allows for categories to
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Table S5: Average properties of the interactions obtained in models with 10% minimal pairs under the sets of
parameter values in Table S3 (with µ retuned) after 5000 iterations. Overlap measures the span of the overlapping
region between categories (i.e. the distance between the most advanced Pusher exemplar and the least advanced
Pushee exemplar). Pushee displacement measures the distance traveled by the Pushee centroid (i.e. the size of the
push).

Pushee Pusher

Set µ Category dist. Overlap Displacement Width Skew Ex. Kurtosis Width Skew Ex. Kurtosis

(1) 2.0 1.99 0.89 0.08 0.62 0.12 −0.55 0.61 −0.18 −0.53

(2) 1.8 1.80 1.07 0.11 0.61 0.12 −0.53 0.59 −0.19 −0.49

(3) 2.8 2.82 1.02 0.07 0.81 0.11 −0.56 0.80 −0.14 −0.56

(4) 2.6 2.62 1.16 0.09 0.80 0.12 −0.55 0.79 −0.16 −0.53

(5) 3.6 3.63 1.12 0.06 1.00 0.11 −0.57 1.00 −0.11 −0.57

(6) 3.4 3.42 1.28 0.08 0.99 0.12 −0.56 0.98 −0.13 −0.55

(7) 2.0 1.99 0.77 0.12 0.60 0.15 −0.54 0.58 −0.25 −0.49

(8) 1.8 1.80 0.94 0.16 0.59 0.13 −0.52 0.57 −0.27 −0.42

(9) 2.8 2.85 0.85 0.11 0.79 0.14 −0.56 0.78 −0.18 −0.54

(10) 2.6 2.64 1.01 0.15 0.78 0.14 −0.54 0.76 −0.22 −0.50

(11) 3.6 3.62 1.04 0.13 1.01 0.14 −0.56 0.99 −0.19 −0.54

(12) 3.4 3.43 1.18 0.17 0.99 0.14 −0.55 0.97 −0.22 −0.52

(13) 2.0 2.01 0.77 0.18 0.61 0.17 −0.54 0.59 −0.31 −0.43

(14) 1.8 1.85 0.94 0.23 0.60 0.15 −0.49 0.57 −0.32 −0.37

(15) 2.8 2.83 0.85 0.17 0.81 0.16 −0.56 0.78 −0.26 −0.49

(16) 2.6 2.63 1.01 0.22 0.79 0.16 −0.52 0.76 −0.28 −0.45

(17) 3.6 3.64 0.94 0.16 1.00 0.15 −0.56 0.97 −0.22 −0.52

(18) 3.4 3.43 1.10 0.22 0.98 0.15 −0.55 0.95 −0.25 −0.48
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Increasing discriminability of HF types relative to LF types

Figure S8: Results of varying discriminability threshold (δ; see Section S1.3) with type frequency for 3 different sets of
parameter values (1 per row), comparing a system with 10% minimal pairs (solid lines) to a system with no minimal
pairs (dotted lines). The figure is laid out in the same way as Figure 9 of the paper. The system with minimal pairs
shows the same patterns as the system without minimal pairs, with increasing discriminability of high-frequency types
relative to low-frequency types (movement from left to right across columns) causing slower change of high-frequency
types than of low-frequency types in the Pushee (negative-sloping sections). However, it also shows reversed effects
when there is little or no difference in discriminability between high- and low-frequency types (left columns), unlike
the system without minimal pairs.
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stably exist closer to one another, it increases the discriminability force,8 High-frequency types are
more sensitive to this increased discriminability force, causing them to be pushed apart moreso
than low-frequency types in the absence of a countervailing perceptual asymmetry. We consider
the size of the reversed frequency effect not to qualify as a meaningful difference between the
models with and without minimal pairs, since the effect is an artifact of our simplified assumptions
about production and storage, and since it only occurs in situations where an empirically-supported
perceptual asymmetry is not present.

The addition of minimal pairs thus does not meaningfully affect the model’s results. Models
both with and without minimal pairs are equally capable of generating two-category interactions
displaying key properties observed in documented sound changes, such as the maintenance of cat-
egory width and overlap. Furthermore, given sufficiently strong perceptual asymmetries, models
both with and without minimal pairs generate word-frequency effects of the kind observed in doc-
umented sound changes. We conclude that minimal pairs are not necessary for generating any
desirable pattern in simulations of two-category activations.

S3.4.3 Minimal pairs are not sufficient: simulations with only minimal pairs compet-
ing

Given that the model’s key results can be obtained both with and without minimal pairs, we next
ask whether they can be obtained if minimal pairs alone underpin category interaction. We conduct
simulations varying the degree to which types with and without minimal partners contribute to
category interaction, to see whether minimal pairs alone are sufficient for generating desirable
category movements and frequency effects.

Since we assume that the phonological frame is perfectly perceived (Section S1.2.6), we assume
that recognition of a type involves competition only between types with the same phonological
frame, i.e. between two real words in a minimal pair or between a real word and a nonword. Given
this assumption, to say that minimal pairs alone underpin category interaction is to say that types
corresponding to nonwords do not compete with types corresponding to real words for recognition.
This lack of nonword type competition is a tacit assumption in existing models of spoken word
understanding (e.g. Norris & McQueen, 2008).9 In the model presented in the paper (described
in Section 3; simulated in Section 5), we assume that nonword types compete to the degree that
would be expected based on their category activation alone, by setting the default value of δ for
nonwords to 1. Here, we relax this assumption by increasing the default value of δ; the larger
the value, the less nonword types compete, and thus the more minimal pairs carry the burden of
category interaction.

To control the extent to which nonword types compete with real words during the recognition
process, we introduced a new parameter, χ. χ is a scale factor that multiplies the activation of
a category for the purpose of recognition when the corresponding type is a nonword, just as 1

δ

8To see why decreased category distance results in increased discriminability force, consider a token at the edge of
the intended category, in the overlapping region. The discriminability force is a function of the number of exemplars of
the other category contained within the activation window around this token; more exemplars from the other category
provide more competition during the discriminability evaluation, yielding a larger discriminability force. The closer
the categories are, the closer the edge of the intended category will be to the centroid of the other category, and thus
the more exemplars from the other category there will be in the activation window.

9Models of spoken word understanding typically assume that competition is between real words that may be
phonological neighbors without being minimal pairs in regards to the segment in question (vowel); for example,
bat competes not just with bet, but also with words like pat and back. This assumption is a consequence of the
phonological frame not being perfectly perceived, and would also follow in our model if we allowed imperfect frame
perception. However, extending the model in this way is beyond the scope of the present work, and it is not clear
that it would systematically contribute to the interaction between vowel categories.
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multiplies the activation when the corresponding type is a real word (Equation (S20)). In this
way, 1

χ corresponds to the default δ value assigned to nonword types. χ can be interpreted as
(proportional to) the response bias toward a category yielding a nonword type.

δk =


[
λ+

(
2(fk−1)
M−1 − 1

)
φ
]1
0

Tk corresponds to a real word

1
χ Tk corresponds to a nonword

(S20)

When the unintended (“other”) type corresponds to a nonword, the formula underlying recog-
nition as the intended type (Equation (S15) can be written out explicitly as:

P (token recognized as Ti|To corresponds to a nonword) =
1
δi
·Ai

1
δi
·Ai + χ ·Ao

(S21)

When χ = 0, the right-hand side of Equation (S21) becomes 1, meaning that every type that is
not in a minimal pair relation is automatically correctly recognized (because there is only one real
word compatible with the perfectly-perceived phonological frame). In other words, nonword types
do not compete for recognition. When χ = 1, the recognition process reverts to that explored in
the previous subsection, in which nonword types compete for recognition to the same extent as in
Section 5 of the paper, but trigger failure when they win. For intermediate values of χ, nonword
types have intermediate degrees of influence on the recognition process.

Note that Equation (S20) is equivalent to Equation (S22), where δ′k = δkχ. Consequently, intro-
ducing the parameter χ is equivalent to multiplying both λ and φ by a scale factor. In other words,
reducing the extent to which nonword types compete with real word types for recognition is equiv-
alent to increasing the average discriminability of types (lowering the discriminability threshold)
and decreasing the discriminability of high-frequency types relative to low-frequency types.

δ′k =


[
λχ+

(
2(fk−1)
M−1 − 1

)
φχ
]1
0

Tk corresponds to a real word

1 Tk corresponds to a nonword
(S22)

To test how χ affects category interaction and type frequency effects, we conducted simulations.
Our simulations involved 10% minimal pairs, as in Section S3.4.2, and used parameter setting (10)
from Section S3.4.2, with a value of 0.5 for φ. To ensure that we could focus just on category
interaction, independent of external effects, we removed Pusher bias by setting β = 0. We explored
6 values for χ: 0, 0.1, 0.25, 0.5, 0.75, and 1. For each value of χ, we ran 1000 models for 50000
iterations each. We present a summary of the rest of the average results after 50000 iterations in
Table S6. As can be seen, category shape (width, skewness, and excess kurtosis) is approximately
maintained for all values of χ, but increases of category distance and Pushee frequency effects are
only obtained for χ > 0. We present a summary of how category distance and Pushee frequency
effects change over time in Figure S9.

It is clear from Table S6 and Figure S9 that having an extremely large default value of δ –
corresponding to no recognition competition from nonword types – is not appropriate, for two main
reasons. Firstly, the categories drift closer together over time to greatly increase overlap, in spite of
the expectation that they should be mutually repellent. Secondly, types of all frequencies change
at the same rate in the Pushee, in spite of the expectation that perceptual asymmetries should
allow low-frequency types to change faster (as in the previous versions of the model). Both of these
results follow from the fact that, when nonword types do not compete for recognition, an intended
type without a minimal partner is automatically recognized regardless of its frequency, because
it is the only real word type that is compatible with the perfectly-perceived phonological frame.

29



Table S6: Average values and % changes for properties of interactions after 50000 iterations, for models with 10%
minimal pairs where nonword types compete during recognition to various degrees (represented by χ). The models
use parameter set in Table S3, retuned to have µ = 2.6, and have no bias (β = 0). Pushee frequency effect measures
the distance between the centroid of the sub-distribution of high-frequency Pushee types and the centroid of the
sub-distribution of low-frequency Pushee types.

Pushee

χ Category distance Category overlap Width Skew Ex. Kurtosis Freq. Effect

0 2.45 (−05.8% ) 2.26 (+125.8% ) 0.90 (+11.3% ) 0.02 (−79.9% ) −0.49 (+34.2% ) −0.00

0.1 2.97 (+14.3% ) 1.36 (+036.2% ) 0.87 (+07.8% ) 0.07 (−15.5% ) −0.53 (+28.1% ) −0.03

0.25 3.26 (+25.3% ) 0.95 (−005.2% ) 0.86 (+06.6% ) 0.07 (−05.8% ) −0.55 (+25.4% ) −0.03

0.5 3.47 (+33.5% ) 0.65 (−034.6% ) 0.86 (+06.3% ) 0.09 (+13.5% ) −0.57 (+23.7% ) −0.03

0.75 3.60 (+38.3% ) 0.50 (−049.8% ) 0.86 (+05.9% ) 0.09 (+16.0% ) −0.57 (+23.6% ) −0.05

1 3.69 (+42.1% ) 0.40 (−059.7% ) 0.86 (+05.8% ) 0.09 (+16.1% ) −0.56 (+24.1% ) −0.04

Figure S9: Results of simulations involving two categories with no bias, where the default value of δ for nonword types
is increased to represent less nonword type competition in recognition, from the standard value of 1 (lightest; expected
competition) to the largest value possible (darkest; no competition). Left: the distance between the categories grows
in all cases except when there is no nonword type competition. Right: high-frequency types change slower than
low-frequency types in all cases except when there is no nonword type competition.
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Thus, there is no discriminability force for the 90% of types without minimal partners, meaning
that there is insufficient force to keep the categories apart, and there is insufficient potential for
perceptual asymmetries to be leveraged in the generation of frequency effects.

Conversely, any default δ that is not extremely large – i.e. any non-zero degree of competition
from nonword types – is sufficient to generate mutual category repulsion and frequency effects.
While smaller default δ (more nonword type competition) causes greater increase in category dis-
tance, it has little impact on category shape, nor on the degree to which low-frequency types change
faster than high-frequency types in the Pushee. Consequently, the model reported in the paper –
where nonword types compete fully, i.e. as would be expected based on the category activations
they incite – yields a qualitative pattern of results that is expected to hold even if the degree of
nonword type competition is reduced.

In summary, the model’s key results cannot be obtained if minimal pairs alone underpin category
interaction (at least, assuming that only a minority of types are in relevant minimal pair relations,
as indicated by the New Zealand English corpus data discussed in Appendix B of the paper).
The burden for category interaction must be extended to types without minimal partners, so that
phonotactically plausible nonword types compete for recognition (even to a small degree). Since it
is types without minimal partners that are crucial to the model’s key results, we conclude that the
decision to leave out minimal pairs from the model in the paper had no qualitative effect on our
main results (reported in Section 5.5).

S3.4.4 How minimal pairs contribute: All types as minimal pairs

The exclusion of minimal pairs in the paper did not cause or prevent any particular kind of category
dynamics or frequency effects, given the assumption that categories interact in more ways than just
through minimal pairs. However, the addition of minimal pairs appeared to exacerbate reversed
type frequency effects that exist in the absence of perceptual asymmetries. In this section, we test
the degree to which the addition of minimal pairs affects frequency effects, by running simulations
where every type is in a minimal pair relation.

In each run of the model, we randomly paired each type with a type in the other category. As
before, this random pairing process removed any influence of type frequency on the results.

To ensure that the decreased stable distance between categories did not disrupt our interpreta-
tion of the simulation results, we again retuned the initial category distance (µ) using frequency-
insensitive discriminability thresholds (δ). Since our previous investigations suggested that minimal
pair presence did not interact with category width, we only performed simulations with the three
parameter sets with σ = 0.8 that we used to compare frequency effects with and without mini-
mal pairs in the previous subsections: sets (4), (10), and (16). For these parameter settings, our
retuning process led us to set µ = 1.4. Using these parameter settings, we ran 1000 models for
5000 iterations each. We illustrate the results for different δ functions in Figure S10, comparing a
system made up of all minimal pairs to a system with no minimal pairs.

As would be expected based on the results with 10% minimal pairs, giving every word a minimal
partner caused large reversed frequency effects in the absence of sufficiently strong perceptual
asymmetries. The reason for these large reversed frequency effects is the same as in the 10% case:
with every type in a minimal pair, categories can stably exist at very close distances, yielding a very
large discriminability force. High-frequency types are more sensitive to perceptual forces than low-
frequency types, and thus are repelled more by this very large discriminability force. The resultant
effect is larger in the case where every type is in a minimal pair than in the case where 10% of
types are in a minimal pair because the categories can stably exist at closer proximities, yielding a
larger discriminability force and hence a larger difference between low- and high-frequency types.
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Increasing discriminability of HF types relative to LF types

Figure S10: Results of varying discriminability threshold (δ; see Section S1.2.7 for details) with type frequency for
3 different sets of parameter values (1 per row), comparing a system made up of all minimal pairs (solid lines) to a
system with no minimal pairs (dotted lines). The figure is laid out in the same way as Figure 9 of the paper. The
system with minimal pairs shows the same patterns as the system without minimal pairs, to an extreme degree.
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What is unexpected based on the results with 10% minimal pairs, however, is that the frequency
effects in the presence of strong perceptual asymmetries – where low-frequency types change faster
than high-frequency types – are likewise enlarged relative to the original model. This result high-
lights an additional implication of making every type a member of a minimal pair, which is that
every type can be misrecognized as one from the other category; in other words, every type can
participate in variant trading. When a range of high-frequency types have sufficiently high discrim-
inability (i.e. δ sufficiently close to 0), they will (practically) always win any recognition process
involving their frames, regardless of the intended category. For example, in the top-right panel of
Figure S10 (in which the underlying δ function has λ = 0.25 and φ = 0.75), all types with frequency
8 or above – which includes all high-frequency types – have δ = 0, and thus automatically win
any recognition process in which they are involved. Consequently, high-frequency types of a given
category will be sampled evenly from both categories, while low-frequency types will be sampled
primarily from their own category. High-frequency types will thus tend toward the mode of the
combination of the two category distributions, while low-frequency types will tend toward the mode
of their corresponding category distribution. Since the mode of the two distributions combined is
between the modes of either distribution independently, it follows that high-frequency types will
be over-represented in the overlapping region, while low-frequency types will be over-represented
in the non-overlapping (exterior) regions of the categories. While this result is not problematic,
the reason for it is, as it implies that a word with a high-frequency minimal partner would never
be recognized. Such behavior cautions against the use of systems with too many minimal pairs.

Even in the system composed entirely of minimal pairs, however, there are discriminability
functions (δ) that yield entirely reasonable frequency effects, as shown in the three panels in Figure
S10 where the system with all minimal pairs overlaps entirely with the system with no minimal
pairs. The discriminability functions yielding these results are such that there is a sufficiently large
perceptual asymmetry (for the given average discriminability) which does not cause high-frequency
types to automatically win recognition. In other words, there are a range of discriminability func-
tions that find a perfect balance for perceptual (discriminability) advantages for high-frequency
types – not too little, not too large – under which the exact same frequency effects are generated,
regardless of the number of minimal pairs in the system. Either side of these perfectly-balanced dis-
criminability functions, the inclusion of minimal pairs causes frequency effects identified in Section
5.5 of the paper to be exaggerated.

S4 Entrenchment

Our simulations in the paper excluded the process of entrenchment, where production is based on an
average of exemplars rather than a single exemplar (Pierrehumbert, 2001). We made this exclusion
because, at a high level, entrenchment appears to be redundant and inappropriate in comparison
to our proposed typicality evaluation. More specifically: (1) a primary motivation of entrenchment
is to provide a squeezing force, but it is not the only way to do so – a squeezing force is also
provided by our treatment of typicality in perception, which is not based on averaging exemplars;
(2) entrenchment squeezes each category toward the mean, which is not as good at preventing
excessive skewness of overlapping categories as the squeezing toward the mode due to typicality;
(3) given the production-perception loop, averaging of exemplars (if it occurs) need not be based
in production – building on Hintzman (1986), Goldinger (1998) argues that averaging occurs in
perception, with activated exemplars yielding an echo that forms the basis of further processing
including storage; (4) under the interpretation of our model as representing an aggregate over a
community, it is not clear that averaging exemplars in production is appropriate – a speaker may
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not be as influenced by exemplars of others’ speech in production as she is by her own.
Nevertheless, since entrenchment is a standard process, we have included an implementation

of it in the code accompanying the paper, for future research. In this section, we describe the
entrenchment process and the technical details of our implementation.

S4.1 Description

Entrenchment represents production influences stemming internally from the exemplar system,
such as practice effects. The process of entrenchment makes the target more similar to existing
exemplars of the same category. All of the exemplars of the given category in an entrenchment
window around the target are activated, with exemplars near the target activated more than those
far away. The target then attempts to shift toward each exemplar in the window, by an amount
proportional to that exemplar’s activation. The net result of this is that the target shifts in the
direction of greater local exemplar density (i.e. toward the category centroid), by an amount related
to the asymmetry in local exemplar density.

The extent to which a target shifts under entrenchment is a function of the entrenchment
window size, ε. As ε increases, the entrenchment window widens to include more exemplars at non-
negligible activation levels. Since there are more exemplars located toward the category centroid
(relative to the target) than away from it, this means that the local density of exemplars located
toward the centroid increases more with ε than does the local density of exemplars located away
from the centroid. As a result, increasing ε highlights the asymmetries in local exemplar density
more, causing a larger shift of the target toward the centroid.

At the level of the category distribution, entrenchment yields a squeezing force that squeezes
each category toward its centroid, enacting reversion to the mean (see Section S1.2.8 for comparison
with reversion to the mode, as enacted by the typicality force). The size of this squeezing force
increases with ε.

S4.2 Implementation details

In our implementation, entrenchment occurs between target selection and the application of bias.
In entrenchment, the target value v is replaced by a weighted average v′ taken over all exemplars

x in the target category Ci, as shown in Equation (S23). Exemplars are weighted by a fixed function
we according to their distance from the target.

v′ =

∑
x∈Ci

xwe(v − x)∑
x∈Ci

we(v − x)
(S23)

The treatment of entrenchment as a weighted average is common to most exemplar-based models
of the production-perception loop, though they typically differ on details. For example, the model
presented by Wedel (2012) and Wedel & Fatkullin (2017) weights exemplars both by distance from
the target and by recency, where recency is encoded in time-decaying exemplar strength. The model
presented by Wedel (2006) randomly chooses a small set of exemplars (with probability determined
by their distance from the target) and weights only these according to recency; averaged over
many runs, this produces equivalent behavior to weighting every exemplar by target-distance and
recency. The model presented by Wedel (2004) uses a much coarser notion of recency for weighting,
giving weight only to the previous few exemplars. The present treatment shows recency-weighting
in the same coarse way; because new exemplars overwrite old exemplars of the same type, only
exemplars which are recent enough to be present are given any weight. Averaged over many runs,
however, the expected behavior of entrenchment in the present model is the same as that in a
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model which weights exemplars by recency in a fine-grained manner. Finally, the model presented
by Pierrehumbert (2001, 2002) assigns (recency-based) weights only to the k exemplars nearest the
target, effectively meaning that the weighting function we is not fixed; rather, a unique weighting
function is appealed to for each production.

In the present treatment, the weighting for entrenchment is provided by a Gaussian window we
with width ε (a parameter), as shown in Equation (S24). Exemplars that are very near the target
are given weights close to 1, while exemplars that are very far away are given weights close to 0.
Increasing ε causes exemplars within a wider radius to be given non-negligible weights.

we(d) = exp

(
−d2

2ε2

)
(S24)

A Gaussian entrenchment window is also used in the models presented by Wedel (2004) and
Wedel (2006); a common alternative is an exponential window (Wedel, 2012; Wedel & Fatkullin,
2017). Our primary reason for choosing a Gaussian entrenchment window in the present treatment
is to mirror the use of a Gaussian activation window (see Section S1.2); the use of the same form
of weighting function in both production and perception is parsimonious.

S5 Equivalences to other frameworks

Our model is equivalent to models from other frameworks in various ways. Firstly, the discrim-
inability evaluation in our model can be viewed as an interactive probabilistic recognition process,
as in the Bayesian model of Norris & McQueen (2008). Secondly, the expected storage and pro-
duction behavior of our model, with random overwriting of exemplars, is equivalent to that of a
special case of exemplar-based models with exponentially-decaying exemplar strengths (following
the framework laid out by Pierrehumbert, 2001), when averaged over many runs. In this section,
we mathematically derive these equivalences, and we use them to elucidate the discriminability
threshold functions and the rate of evolution of the system respectively.

S5.1 Discriminability as interactive recognition

Discriminability evaluation in our model is framed as a check on the quality of a token that has
already been identified. It can alternatively be viewed as an interactive probabilistic recognition
process, where the acoustic value of the token is assessed bottom-up for its potential to be a
realization of candidate types of different categories, which assert top-down influences. In this
interpretation, non-existent types (i.e. nonwords) are considered alongside existing types due to
their phonotactic plausibility, but if a non-existent type emerges from the recognition process, it is
not stored as an exemplar for future productions.

In the discriminability evaluation, an incoming signal with phonological frame p and target
phoneme acoustic value v is evaluated for discriminability as a token of category Ci by comparing
the activation of that category, Ai(v) (relative to the activation of the other category), to the
discriminability threshold, δi(p). In the absence of minimal pairs, the probability of passing the
evaluation, PD(C1, v, p), is given by Equation (S10), rewritten below in Equation (S25).

PD(C1, v, p) =
A1(v) 1

δ1(p)

A1(v) 1
δ1(p)

+A2(v)
(S25)

The use of type frequency to modulate the discriminability of acoustic signals (via frequency-
sensitive threshold δi(p)) represents a combination of top-down and bottom-up information, which
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is typical in models of word recognition. The mathematical form of discriminability evaluation in
the present model is similar to that of Bayesian word recognition (e.g. Norris & McQueen, 2008),
represented in Equation (S26)10 for categories Ci, phonological frame p and acoustic value v.

P (C1|v, p) =
P (v|C1, p)P (C1|p)

P (v|C1, p)P (C1|p) + P (v|C2, p)P (C2|p)
(S26)

We make this similarity apparent by dividing both the numerator and denominator in Equation
(S26) by P (C2|p) and comparing the result (Equation (S27)) to Equation (S25).

P (C1|v, p) =
P (v|C1, p)

P (C1|p)
P (C2|p)

P (v|C1, p)
P (C1|p)
P (C2|p) + P (v|C2, p)

(S27)

Taking each P (v|Cj , p) to be approximately proportional11 to Aj(v), the expressions in Equa-
tions (S27) and (S25) become (approximately) identical if a particular relationship holds between
the prior and the discriminability threshold:

1

δ1(p)
=
P (C1|p)
P (C2|p)

(S28)

i.e.

δ1(p) =
1− P (C1|p)
P (C1|p)

(S29)

since P (C2|p) = 1− P (C1|p) in a two-category system.

S5.1.1 Using the comparison to understand discriminability thresholds

We can use the relationship between discriminability thresholds in our model and prior proba-
bility in the Bayesian model (Equation (S29)) to elucidate the interpretation of discriminability
thresholds. For illustration, we plot the relationship for several different discriminability threshold
functions in Figure S11. As can be seen, lower discriminability threshold corresponds to higher prior
probability, and the mapping between discriminability threshold and prior probability is nonlinear.

This comparison also reveals that the linearly-decreasing discriminability threshold functions
explored here yield priors of a reasonable shape. A “reasonable” prior would be one that increases
in a decelerating fashion with word frequency, as humans have a tendency to over-estimate the
frequency of rare words and under-estimate the probability of common words (Begg, 1974). While
Figure S11 shows that the prior corresponding to our choice of discriminability threshold function
(orange line) is increasing in an accelerating fashion with type frequency, recall from Section S1.1
that type frequency in our model represents a subjective, flattened (log-transformed) form of ac-
tual word frequency. When the horizontal axis in Figure S11 is stretched non-linearly to represent

10Following our assumptions about the phonological frame being perfectly retrievable, it can be treated as a
condition throughout the equation; this means the prior P (C|p) represents a comparison between two potential
members of a minimal pair differing only in target phoneme identity, and the likelihood P (v|C, p) is determined by
the acoustic quality of the target phoneme.

11P (v|Cj , p) need not be exactly proportional to Aj(v). Both are generated from the exemplar distribution in the
same way (via Gaussian convolution; see Section S1.2), under imprecision and activation respectively, but the effects
of imprecision and activation will yield different results if the corresponding parameters, ι and α, are different. This
was found to be the case in our parameter tuning process, with ι > α in the two-category interactions we modeled;
hence the approximation.

36



Figure S11: Illustration of the correspondence between discriminability threshold in the present model and prior
type probability in a Bayesian framework. Lower discriminability threshold corresponds to higher prior probability.
A constant discriminability threshold corresponds to a uniform prior (black). A linearly-decreasing discriminability
threshold corresponds to an accelerating increasing prior (orange). As the discriminability threshold becomes more
bowed downward, the prior becomes more bowed upward, passing from linearly-increasing (blue) to decelerating
increasing (green).

word frequency rather than type frequency, all of the increasing curves are revealed to be decel-
erating. Thus, a discriminability threshold function that decreases linearly with type frequency
corresponds to a prior that increases in a decelerating fashion with word frequency, which we take
to be reasonable.

S5.2 Overwriting and decay

In Appendix A.4 of the paper, we asserted that our treatment of memory, where all stored exemplars
have constant strength 1 and storage entails overwriting an exemplar of the same type, is equivalent
to a treatment in which exemplars decay in strength over time and are never overwritten (following
the framework laid out by Pierrehumbert, 2001). Building on this point, we asserted that the
expected overall behavior of our “overwriting” model (averaged over many runs) is the same as
that of the “decay” model for a particular choice of decay rate, as the expected behavior of the
overwriting model (averaged over many runs) is mathematically equivalent to that of a special case
of the decay model. Here, we derive these assertions, and we use them to show that the rate of
evolution of the system in our model is determined by the total number of exemplars (across types).

For both the overwriting and the decay models, we consider a type with frequency f in a system
where the total combined frequency of all types (i.e. total number of exemplars, in the overwriting
model) is N . Our mathematical analysis assumes that f represents subjective type frequency. It
is not sensitive to the way in which these subjective frequencies are obtained from objective values
(e.g. whether they represent raw or log corpus frequencies), though this may have implications
for the caveats we describe in Section S5.2.4. We focus on a single exemplar of this type that was
stored at time 0, and we consider its contribution to the behavior of the system at time t (i.e. after t
production-storage iterations). For simplicity, we assume that every token is stored; allowing some
tokens not to be stored slows down the rate of evolution. For the decay model, we assume that the
strength of each exemplar is scaled by a factor of k < 1 with each iteration. As in the simulations
presented in the paper (Section 3.1.5), we also assume that both models consist of a single agent
talking to herself, so that the sources of storage and production are identical; our derivations as
stated do not apply to situations with multiple interacting agents, which are beyond the scope of
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this paper.
Our mathematical derivations assume that there are multiple types in the system, but they make

no assumptions about the allocation of those types to categories. Our results can be understood to
apply equally well to a case with a single category (and multiple types in that category) or to a case
with multiple categories (and at least one type per category). Because we assume there are multiple
types, our decay-based model is not the same as the one presented by Pierrehumbert (2001), which
observed apparent frequency effects using a single type in a single category. In Section S5.2.5,
we develop a full comparison with the actual model presented by Pierrehumbert (2001), through
which we demonstrate why the apparent frequency effects observed from that model do not hold
of exemplar-based models in general.

S5.2.1 Equivalence of memory treatments

We first show that the overwriting and decay models have equivalent treatments of memory. For this
purpose, we compare the probability that an exemplar remains after t iterations in the overwriting
model with the strength of an exemplar after t iterations in the decay model.

Overwriting model. In the overwriting model, an exemplar stored at time 0 will remain at time
t provided that any subsequent tokens of the same type do not overwrite it.

The probability of producing a token of the given type on any iteration is f/N . Given a token
of that type, the probability of overwriting the given exemplar with it is 1/f . Thus, the probability
of overwriting the given exemplar on any iteration is 1/N , so the probability of not overwriting it
on any iteration is 1− (1/N).

For the exemplar still to be present after t iterations, it must not have been overwritten on each
iteration. Since each iteration is independent, the probability of this is

P (exemplar remains at time t) =

(
1− 1

N

)t
(S30)

which is exponentially decreasing with t at a rate given by 1− 1/N .
Decay model. In the decay model, an exemplar is stored at time 0 with strength 1, and this

strength decays exponentially.
On each iteration, the strength of the exemplar is multiplied by k < 1. Thus, the strength of

the exemplar at time t is

Sx(t) = kt (S31)

Model comparison. As can be seen, the probability of an exemplar remaining after t iterations
in the overwriting model (Equation (S30)) and the strength of an exemplar after t iterations in
the decay model (Equation (S31)) have the same form. Furthermore, for the particular choice of
k = 1 − (1/N), they are identical. Thus, though the two models appear to have very different
treatments of memory, they are mathematically equivalent in terms of their expected outcomes
(averaged over many runs).

S5.2.2 Equivalence of overall expected behavior

Having established that the two models have equivalent expected treatments of memory (averaged
over many runs), we now show that they have equivalent treatments of production, in terms of
their expected choice of production targets (averaged over many runs). Since the system evolves
by means of producing new tokens to store in memory, these equivalences jointly imply that the
two models are equivalent in terms of their overall expected behavior (averaged over many runs).
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We consider an exemplar stored at time 0 and compare the probability of choosing that exemplar
as production target at time t in both models.

Overwriting model. In the overwriting model, the choice of a given exemplar as production
target at time t has three conditions. Firstly, the exemplar must remain in the system at time
t. Secondly, the speaker must choose to produce the type of which the exemplar is an instance.
Thirdly, the exemplar must be chosen as target from all exemplars of that type.

The probability of the exemplar remaining in the system at time t is (1 − (1/N))t (Equation
(S30)), the probability of the type being chosen is f/N , and the probability of the exemplar being
chosen from all f exemplars of that type is 1/f . Thus, the probability of choosing an exemplar as
production target t iterations after it was stored is:

P (exemplar chosen as target at t) =
1

N

(
1− 1

N

)t
(S32)

Decay model. In the decay model, the choice of a given exemplar as production target at time t
has two conditions: the speaker must choose to produce the corresponding type, and the exemplar
must be chosen as target from all exemplars of that type.

As in the overwriting model, the probability of the type being chosen is f/N . The probability
of choosing the exemplar from all exemplars of that type is Sx(T )/

∑
y∈T Sy(t), where Sx(t) = kt

is the strength of the exemplar at time t and
∑

y∈T Sy(t) is the total strength of all exemplars of
that type at time t. Thus, the probability of choosing an exemplar as production target t iterations
after it was stored is:

P (exemplar chosen as target at t) =
f

N
· kt∑

y∈T Sy(t)
(S33)

For the sake of exploring expected behavior (i.e. behavior on average, over many runs),∑
y∈T Sy(t) may be approximated by S?, the expected total strength at any time. To obtain a

value for S?, we consider r synchronized runs of the model (where r is large) at a particular point

in time, with total strengths Ŝ?i (for i from 1 to r) for a given type. S? is given by the mean of
these total strengths.

S? =

∑r
i=1 Ŝ

?
i

r
(S34)

After a single iteration, each total strength Ŝ?i will have been multiplied by k due to decay, and
(f/N)r of them are expected to have also grown by 1 due to new productions of the given type.
Their mean is still expected to be S?.

S? =

(∑r
i=1 kŜ

?
i

)
+ f

N r

r
(S35)

= k

∑r
i=1 Ŝ

?
i

r
+
f

N
(S36)

Substituting Equation (S34) into Equation (S36) yields

S? = kS? +
f

N
(S37)
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which can be solved for S?:

S? =
f

N(1− k)
(S38)

Substituting S? for
∑

y∈T Sy(t) in Equation (S33) gives an analytic approximation of the ex-
pected probability (averaged over many runs) of choosing an exemplar as production target t
iterations after it was stored:

P (exemplar chosen as target at t) ≈ (1− k)kt (S39)

Two caveats are required in order for this approximation to be valid. Firstly, the system must
not be in its early iterations. Secondly, the decay rate must not be extremely fast relative to
the range of type frequencies, such that low-frequency types are expected to have total exemplar
strength S? < 1. We describe the caveats in more detail in Section S5.2.4.

Model comparison. As can be seen, the probability of an exemplar being chosen as a production
target t iterations after it was stored has the same form in both the overwriting (Equation (S32)) and
the decay (Equation (S39)) models. As was the case for memory (Section S5.2.1), these probability
expressions are identical for the particular choice of k = 1− (1/N). Thus, the overwriting model’s
expected overall behavior (averaged over many runs) is a special case of the decay model’s expected
overall behavior (averaged over many runs). Given an overwriting model with a total number of
exemplars N , it is possible to choose a decay rate k allowing the construction of a decay model
with the same expected overall behavior (averaged over many runs). Consequently, any overwriting
model is equivalent to some decay model.

We note, however, that the reverse equivalence is not always true: for some decay models,
it is not possible to construct an overwriting model showing the same expected overall behavior
(averaged over many runs). Because an overwriting model necessarily contains at least one exemplar
of each type at every point in time, it requires all types to have expected exemplar strength S? ≥ 1,
which is not true in decay models in which the decay rate is extremely fast (relative to the range
of type frequencies). See Section S5.2.4 for further discussion.

S5.2.3 Using the comparison to understand rate of evolution

Exemplar models evolve via the production and storage of tokens. Assuming (for simplicity) that
each production involves the application of a constant bias and all tokens are stored, the rate of
evolution of the system – i.e. the rate with which the production bias translates into category
movement – is determined by the probability distribution over production targets according to
their age. The more likely recent exemplars are to be chosen as targets, the more production biases
will snowball, and the faster the system will evolve.

In the overwriting model (Equation (S32)), the probability of an exemplar being chosen as
target t iterations after it was stored is uniquely determined by N , the total number of exemplars
in the system. For small N , the probability mass is concentrated around small t, so that recent
exemplars are much more likely than old exemplars to be chosen as targets and thus the system
evolves quickly. As N increases, the probability mass remains highest for small t, but spreads out
over a larger range of values of t, increasing the probability that older exemplars will be chosen as
targets and thus decreasing the rate of evolution of the system. Thus, increasing the number of
exemplars in the system simply slows down its evolution, without affecting its qualitative behavior,
as shown by the simulations in Section S3.2. A similar observation can be made for the decay
model (Equation (S39)) with respect to the decay parameter k; decreasing k causes the system to
evolve faster.
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Because the probability distribution over production targets according to their age does not
vary with type frequency (i.e. f is not involved in Equations (S32) and (S39)), it follows that types
of all frequencies are expected (on average) to evolve at the same rate. This is the basis of the
lack of frequency effect observed for single-category movement under the overwriting model (see
Section 4.2 of the paper). Under the decay model, a lack of frequency effect is also obtainable (see
Sóskuthy, 2014, for related simulations), but it is contingent on the caveats for the assumptions
made in our analysis. In Section S5.2.4, we describe the caveats in detail and show that there
are certain parameter settings under which the decay model can give rise to frequency effects in
single-category movement.

S5.2.4 Caveats for the decay model

In Section S5.2.2, we noted that there are two caveats on the analytical approximation for pro-
duction target selection in the decay model. Both caveats concern the approximation of the total
strength of all exemplars of a particular type T at time t,

∑
y∈T Sy(t), by the expected total strength

at any time, S? (Equation (S38)).
Firstly, the system must “burn in” – i.e. be run for sufficiently many iterations – in order for

strengths to build to the expected value S?. In other words, the exemplar distributions for each
type must build up to stable densities before the approximation is valid. Thus, our analytical
approximation does not hold for the early iterations of a decay-based model that is seeded from
sparse exemplar distributions. Consequently, it would not apply to a situation such as a child
accumulating experience as they learn a language. However, given that we model regular sound
change, which can occur within a lifetime and be reflected in the way that an adult’s speech changes
(Harrington, 2006), we do not believe this limitation to prevent us from gaining insight from our
model comparison.

Secondly, the system must be defined in such a way that S? is sufficiently greater than 1. When
S? is close to 1, the total strength

∑
y∈T Sy(t) is volatile, as the addition of 1 strength with each

new exemplar constitutes a substantial portion of S?. In this case,
∑

y∈T Sy(t) will tend to be
above S? for small t, meaning that the approximation will tend to overestimate the probability
of recent exemplars being selected as target. Consequently, types for which S? / 1 will not have
recent exemplars selected as production targets as often – and thus will not advance as rapidly –
as expected under the approximation. Since S? decreases with type frequency (Equation (S38)),
extreme cases of the decay model (i.e. ones in which S? ≈ 1 for low-frequency types and S? � 1
for high-frequency types) may thus predict low-frequency types to advance at a slower rate than
high-frequency types. Such extreme cases would arise in the presence of either an extremely fast
decay rate or an extremely long-tailed distribution of type frequencies, where a high-frequency type
is presented for storage orders of magnitude more often than a low-frequency type.

In what follows, we illustrate how choices made by the modeler can affect this second caveat,
radically altering the qualitative results of a decay-based model (assuming it has been run for
sufficient iterations first, as in the first caveat). To facilitate our illustration, we introduce two
quantities of interest: the e-folding time for the system and the recurrence time for different types.
The e-folding time, defined in Equation (S40), is related to the decay rate and represents the
number of iterations required for exemplar strength to decay by a factor of e. From the e-folding
time, we can also obtain the exemplar lifespan, representing the number of iterations for which an
exemplar persists in memory; for the following discussion, we assume that an exemplar may be
removed once its strength depletes by more than 99% (following Wedel & Fatkullin, 2017), giving a
lifespan of approximately 5 e-folding times. The recurrence time, defined in Equation (S42), is the
reciprocal of (normalized) type frequency and represents the expected number of iterations between
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productions of a given type.

e-folding time: E =
−1

ln(k)
(S40)

≈ 1

1− k
(S41)

recurrence time: R =
N

f
(S42)

Equations (S41)12 and (S42) can be substituted in Equation (S38) to yield a definition of
expected total exemplar strength, S?, in terms of e-folding time and recurrence time, given in
Equation (S43).

S? ≈ E

R
(S43)

The definition in Equation (S43) allows us to easily recognize when the second caveat will not
hold, and thus when frequency effects will be expected. We expect frequency effects in a model
in which high-frequency types have recurrence times much shorter than the e-folding time and
low-frequency types have recurrence times at least as long as the e-folding time.

How can the e-folding and recurrence times be determined? Both are measured in terms of
model iterations. An iteration corresponds to the production and perception of a single token that
is considered for storage. Thus, some guidance can be provided by consideration of the objective
rates of production and perception of words in the real world. After accounting for sampling error
(Pierrehumbert & Granell, 2018), objective recurrence times for different words can be estimated
to range from 20 (for the word the) to more than 100 million (for extremely rare words). To put
these numbers in context, Brysbaert et al. (2016) calculate that the average person may hear just
under 12 million words per year, and a typical psycholinguistic study (e.g. Carreiras et al., 2006)
defines “high-frequency” words as having recurrence times of approximately 25,000 (40 tokens per
million) and “low-frequency” words as having recurrence times between 300,000 and 2 million (3
to 0.5 tokens per million). However, these objective distributions do not translate directly into
the model. Since not every actual word token that is uttered need be considered for storage (as
discussed in Appendix A.3 of the paper), the representations of type frequency in the model – and
thus the determinations of the e-folding and recurrence times – rely on subjective distributions.
The modeler is free to choose the function mapping from objective to subjective distributions,
giving a large amount of freedom over the choice of e-folding and recurrence times. This freedom
of choice can determine model behavior.

For example, if we assume that subjective frequencies are identical to objective frequencies, then
the extremely large range of recurrence times means that there is a correspondingly large range
of e-folding times in which a model will show frequency effects. For example, any e-folding time
around 2 million iterations or less – corresponding to an exemplar lifespan of 10 months or more –
will generate lag among “low-frequency” words as defined by the psycholinguistic literature. The
literature does not contain enough results on the processing of rare words to determine whether this
long exemplar lifespan is appropriate for low-frequency words, but the use of objective frequencies

12The approximation in Equation (S41) is obtained from taking the first-order Taylor polynomial of ln(k) about 1
and holds provided k is sufficiently close to 1. For example, for all cases discussed here (k > 0.9995, E ≥ 2000), the
multiplicative error in the estimation is 0.025% or less, which does not substantially impede our ability to identify
circumstances in which S? / 1 or S? � 1.
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implies that it must also apply to high-frequency words, for which it is likely too long. Consequently,
any choice of e-folding time that is not too long for high-frequency words will cause some types to
change faster than others in a model using objective frequencies.

In such a situation, precisely which types change faster will depend upon the e-folding time. For
example, with an e-folding time of 2,000 (following Pierrehumbert, 2001), faster change would be
observed among types with recurrence times of less than around 2,000. For English, this corresponds
to a small set of about 200 extremely common words, which does not have good coverage of the
content words defined as “high-frequency” in the prior literature. Consequently, the frequency
effects obtained in this situation would not correspond to real effects observed empirically. Under
an alternative e-folding time of 30,000, the set of faster-moving types would expand to include
the approximately 3,000 English words typically defined as “high-frequency”. In this situation, an
exemplar would have a lifespan of approximately 5 days, which is extremely fast in comparison to the
recurrence times for low-frequency words that occur around once a year (or less). Consequently, a
model assuming this e-folding time and distribution of recurrence times would also have to assume
that rare words – which encompass a non-negligible proportion of the lexicon, as demonstrated
in Figure S1 – are practically incapable of establishing stable exemplar-based representations in
the minds of typical speakers. Such an assumption would raise questions for studies drawing on
representations of rare words, such as mammary in Bybee’s original work adducing a connection
between word frequency and leniting changes (Hooper, 1976).

Alternatively, if we assume that subjective frequency is nonlinearly “flattened” from objective
frequency, then the range of recurrence times is likewise compressed, and it becomes easier for
models to show no frequency effects. For example, in our current model, recurrence times range
from 41 (for the highest-frequency type) to 492 (for the lowest-frequency type).13 In a corresponding
decay model with an e-folding time of 2,000 iterations (again following Pierrehumbert, 2001), we
would thus expect no frequency effects. To provide an indication of what this e-folding time
means on a real-time scale, we change the interpretation of subjective frequencies. Previously, we
interpreted subjective frequencies as reflecting the assumption that some tokens are filtered out
in perception before being considered for storage, with more filtering for higher-frequency types.
Alternatively, we can maintain that all tokens are considered for storage, and interpret subjective
frequencies as reflecting the assumption that exemplars of higher-frequency types are stored with
lower initial strength, giving them shorter lifespans. Under this interpretation, an e-folding time
of 2,000 means that “high-frequency” words (as defined in the psycholinguistic literature) would
have lifespans of around 1–2 months, while “low-frequency” words would have lifespans of around
5–10 months. Much work remains to be done in investigating a real-world-scale decay version of
our model, but such work goes beyond the scope of the present discussion.

To summarize, the question of whether or not a decay-based model meets the second caveat
– and thus whether it displays no frequency effects or a high-frequency advantage – depends on
the relationship between the e-folding time, determined by the decay rate, and the distribution
of recurrence times, determined by subjective type frequencies. To generate frequency effects,
the e-folding time needs to be sufficiently fast and the range of recurrence times sufficiently large.
Furthermore, when there are frequency effects, the subset of words that change faster is determined
by where the e-folding time falls in the distribution of recurrence times.

13It is a consequence of our overwriting-based treatment of memory that the recurrence time for the lowest-frequency
type can be no greater than the total number of exemplars in the system. For reasons of computational resources,
our present simulations assume a small number of types and hence a small number of exemplars, giving us relatively
short recurrence times. Scaling up the number of types in our model will also scale up the recurrence times. If the
e-folding time is not scaled up commensurately, then there are certain parameter ranges in which we expect to observe
frequency effects (where the e-folding time falls between the recurrence times for high- and low-frequency types).
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The e-folding time and distribution of recurrence times are determined by choices made by the
modeler, which concern the decay rate and the function mapping from objective to subjective type
frequency. The most appropriate choices have not yet been determined in the literature, as it is
unclear precisely how long exemplars may persist in memory – particularly for extremely rare words
– and precisely how an incoming stream of tokens is filtered to allow only a subset to be presented
for potential storage. Until the appropriate choices are elucidated by the literature, we believe it
is reasonable to assume that they meet with the caveats outlined in this section, and thus that the
overwriting-based and decay-based models are truly (bidirectionally) equivalent.

S5.2.5 Direct comparison to Pierrehumbert (2001)

In Section S5.2.3, we pointed out that the expected behavior (averaged over many runs) of a model
in which memory turnover involves exponential decay of exemplars is equivalent to that of one
in which memory turnover involves random overwriting of exemplars, provided the former meets
the caveats in Section S5.2.4. However, the results of the most well-known exemplar model in
the literature (Pierrehumbert, 2001), which uses exponential decay, appear to differ from those of
our model, which uses random overwriting. For simulations involving a single phomene category
moving under articulatory bias, Pierrehumbert (2001) reported that high-frequency words change
faster than low-frequency words, whereas our present model yields no frequency effect. Since
Pierrehumbert (2001) has been widely cited as a demonstration that exemplar models necessarily
predict frequency effects (that favor high-frequency words), it is important to diagnose the reasons
for this difference.

Pierrehumbert (2001) represents the first foray into formal modeling of exemplar dynamics in
sound change, and lays important groundwork for our present model. However, as pioneering work,
Pierrehumbert’s model is necessarily very schematic, and has some limitations. The limitation that
is primarily responsible for the discrepancy with the results of our present model concerns the
model architecture.

The model presented by Pierrehumbert (2001) does not contain a lexical (“type”) level, meaning
that – without frequency-based variation in the decay rate or exemplar lifespan – it is technically
incapable of obtaining type frequency effects in simulations involving a single phoneme category.
Without separate type representations, each phoneme category effectively contains a single type
and the same type is necessarily produced on every iteration. Pierrehumbert (2001) observes that
the advancement of the type’s exemplars is determined by the number of iterations for which the
simulation is run: the more iterations, the more the type is produced with articulatory bias, and
thus the more it advances. While it is tempting to interpret this observation as reflecting an effect
of frequency, it actually reflects an effect of time. This is because each iteration also corresponds
to a single application of decay. After sufficient iterations, a specific exemplar will become so
weak that its contribution is negligible, meaning it can effectively be dropped from the system.
Thus, exemplars have a lifespan, which corresponds to a certain period of time, and each iteration
represents a fixed fraction of this lifespan. Both the decay rate and the lifespan of an exemplar are
assumed not to vary with type frequency. Therefore, regardless of type frequency, each iteration
corresponds to a fixed period of time, and running a simulation for more iterations corresponds
to observing a change over a greater period of time. Having the potential to observe an effect of
frequency would require the number of iterations taking place in a given period of time to vary
with type frequency. This would only be possible in simulations of a single type if decay rate or
exemplar lifespan were assumed to vary with type frequency.

In simulations with multiple types within the same category, by contrast, each type may be
produced on different numbers of iterations within the same period of time. Our present model,
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(A)

(B)

Figure S12: Illustration of how gaps between productions cause high-frequency types (orange; left) to be held back by
competition with old exemplars more than low-frequency types (green; right). (A) Comparison of strength of most
recent exemplar (red triangle) to strength of older exemplars of the same type (black circles). A high-frequency type
has many more old exemplars than a low-frequency type, with correspondingly greater strengths. (B) Probability
of selecting the most recent exemplar (red triangle) as the target for production of the type. Since the aggregate
strength of old exemplars is greater for a high-frequency type than for a low-frequency type, they compete much
more for selection.

which has type-level representations, shows that single-category movement is typically unaffected
by type frequency. In a decay-based model that meets the caveats laid out in Section S5.2.4, this
lack of frequency effect follows because the strengths of exemplars of a given type continue to decay
during the gaps between productions of that type. The shorter the gap, the stronger old exemplars
of the type will be relative to the most recent exemplar, and thus the more they will compete
with it to provide the acoustic target for the next production of the type. Competition from old
exemplars holds a category back, since old exemplars represent earlier (less advanced) stages of the
change. Since a high-frequency type has shorter gaps between productions than a low-frequency
type, it will be held back by competition from old exemplars more, counterbalancing the fact that
it will be produced (with articulatory bias) more often. We illustrate this process in Figure S12,
using parameters corresponding to the simulations presented in this paper.

The fact that the model presented by Pierrehumbert (2001) is technically unable to display
frequency effects in single-category simulations renders moot the question of differences from our
model. While some decay-based models (with type-level representations) do display frequency
effects in single-category simulations, consistent with the broader suggestions made by Pierrehum-
bert (2001), these effects are contingent on modeler choices, as discussed in Section S5.2.4. The
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literature to date has not recognized this contingency and has taken Pierrehumbert’s suggestions
extremely generally, giving rise to criticisms that exemplar models necessarily over-predict word
frequency effects and cannot explain all the patterns found in empirical studies (Abramowicz, 2007;
Dinkin, 2008; Tamminga, 2014; Bermúdez-Otero et al., 2015). As we have shown, these criticisms
are not applicable to exemplar models as a class, and the new model presented here is successful
in generating all of the reported patterns.
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Bermúdez-Otero, R., Baranowski, M., Bailey, G., & Turton, D. (2015). A constant rate effect in
Manchester /t/-glottalling: high-frequency words are ahead of, but change at the same rate as,
low-frequency words. Paper presented at 2nd Edinburgh Symposium on Historical Phonology.

Blevins, J., & Wedel, A. (2009). Inhibited sound change: An evolutionary approach to lexical
competition. Diachronica, 26 , 143–183. doi:10.1075/dia.26.2.01ble.

Bowers, J. S. (2000). The modality-specific and -nonspecific components of long-term priming are
frequency sensitive. Memory & Cognition, 28 , 406–414. doi:10.3758/BF03198556.

Bradlow, A. R., & Bent, T. (2008). Perceptual adaptation to non-native speech. Cognition, 106 ,
707–729. doi:10.1016/j.cognition.2007.04.005.

Brysbaert, M., Stevens, M., Mandera, P., & Keuleers, E. (2016). How many words do we know?
Practical estimates of vocabulary size dependent on word definition, the degree of language input
and the participant’s age. Frontiers in Psychology , 7 , 1116. doi:10.3389/fpsyg.2016.01116.

Busemeyer, J. R., Dewey, G. I., & Medin, D. L. (1984). Evaluation of exemplar-based generalization
and the abstraction of categorical information. Journal of Experimental Psychology: Learning,
Memory, and Cognition, 10 , 638–648. doi:10.1037/0278-7393.10.4.638.

Carreiras, M., Mechelli, A., & Price, C. J. (2006). Effect of word and syllable frequency on activation
during lexical decision and reading aloud. Human Brain Mapping , 27 , 963–972. doi:10.1002/
hbm.20236.

Chee, M. W. L., Goh, J. O. S., Lim, Y., Graham, S., & Lee, K. (2004). Recognition memory
for studied words is determined by cortical activation differences at encoding but not during
retrieval. NeuroImage, 22 , 1456–1465. doi:10.1016/j.neuroimage.2004.03.046.

46

http://dx.doi.org/10.1006/jmps.1995.1021
http://dx.doi.org/10.1037/h0036356
http://dx.doi.org/10.3758/BF03194388
http://dx.doi.org/10.1075/dia.26.2.01ble
http://dx.doi.org/10.3758/BF03198556
http://dx.doi.org/10.1016/j.cognition.2007.04.005
http://dx.doi.org/10.3389/fpsyg.2016.01116
http://dx.doi.org/10.1037/0278-7393.10.4.638
http://dx.doi.org/10.1002/hbm.20236
http://dx.doi.org/10.1002/hbm.20236
http://dx.doi.org/10.1016/j.neuroimage.2004.03.046


Clarke-Davidson, C. M., Luce, P. A., & Sawusch, J. R. (2008). Does perceptual learning in speech
reflect changes in phonetic category representation or decision bias? Perception & Psychophysics,
70 , 604–618. doi:10.3758/PP.70.4.604.

Dahan, D., Drucker, S. J., & Scarborough, R. A. (2008). Talker adaptation in speech percep-
tion: Adjusting the signal or the representations? Cognition, 108 , 710–718. doi:10.1016/j.
cognition.2008.06.003.

Davies, M. (2008-). The Corpus of Contemporary American English: 520 million words, 1990-
present. URL: http://corpus.byu.edu/coca/ [Date retrieved: July, 2014].

Diana, R. A., & Reder, L. M. (2006). The low-frequency encoding disadvantage: Word frequency
affects processing demands. Journal of Experimental Psychology: Learning, Memory, and Cog-
nition, 32 , 805–815. doi:10.1037/0278-7393.32.4.805.

Dinkin, A. J. (2008). The real effect of word frequency on phonetic variation. University of
Pennsylvania Working Papers in Linguistics, 14 , 97–106.

Ettlinger, M. (2007). An exemplar-based model of chain shifts. In J. Trouvain, & W. J. Barry
(Eds.), Proceedings of the 16th International Congress of the Phonetic Science (pp. 685–688).

Forster, K. I., & Davis, C. (1984). Repetition Priming and Frequency Attenuation in Lexical
Access. Journal of Experimental Psychology: Learning, Memory, and Cognition, 10 , 680–698.
doi:10.1037/0278-7393.10.4.680.

Ganong, W. F. (1980). Phonetic categorization in auditory word perception. Journal of Experi-
mental Psychology: Human Perception and Performance, 6 , 110–125. doi:10.1037/0096-1523.
6.1.110.

Goldinger, S. D. (1998). Echoes of echoes? An episodic theory of lexical access. Psychological
Review , 105 , 251–279. doi:10.1037/0033-295X.105.2.251.

Goldinger, S. D., Luce, P. A., & Pisoni, D. B. (1989). Priming Lexical Neighbors of Spoken
Words: Effects of Competition and Inhibition. Journal of Memory and Language, 28 , 501–518.
doi:10.1016/j.biotechadv.2011.08.021.Secreted.

Harrington, J. (2006). An acoustic analysis of ‘happy-tensing’ in the Queen’s Christmas broadcasts.
Journal of Phonetics, 34 , 439–457. doi:10.1016/j.wocn.2005.08.001.

Harrington, J., Kleber, F., Reubold, U., Schiel, F., & Stevens, M. (2018). Linking Cognitive and
Social Aspects of Sound Change Using Agent-Based Modeling. Topics in Cognitive Science, (pp.
1–22). doi:10.1111/tops.12329.

Hintzman, D. L. (1986). “Schema Abstraction” in a Multiple-Trace Memory Model. Psychological
Review , 93 , 411–428. doi:10.1037/0033-295X.93.4.411.

Hintzman, D. L., & Block, R. A. (1971). Repetition and memory: Evidence for a multiple-trace
hypothesis. Journal of Experimental Psychology , 88 , 297–306. doi:10.1037/h0030907.

Hooper, J. B. (1976). Word frequency in lexical diffusion and the source of morphophonological
change. In W. Christie (Ed.), Current Progress in Historical Linguistics (pp. 96–105). Amster-
dam: North Holland.

47

http://dx.doi.org/10.3758/PP.70.4.604
http://dx.doi.org/10.1016/j.cognition.2008.06.003
http://dx.doi.org/10.1016/j.cognition.2008.06.003
http://corpus.byu.edu/coca/
http://dx.doi.org/10.1037/0278-7393.32.4.805
http://dx.doi.org/10.1037/0278-7393.10.4.680
http://dx.doi.org/10.1037/0096-1523.6.1.110
http://dx.doi.org/10.1037/0096-1523.6.1.110
http://dx.doi.org/10.1037/0033-295X.105.2.251
http://dx.doi.org/10.1016/j.biotechadv.2011.08.021.Secreted
http://dx.doi.org/10.1016/j.wocn.2005.08.001
http://dx.doi.org/10.1111/tops.12329
http://dx.doi.org/10.1037/0033-295X.93.4.411
http://dx.doi.org/10.1037/h0030907


Johnson, K., Flemming, E., & Wright, R. (1993). The Hyperspace Effect: Phonetic Targets Are
Hyperarticulated. Language, 69 , 505–528. doi:10.2307/416697.

Kinoshita, S. (1995). The Word-Frequency Effect In Recognition Memory Versus Repetition Prim-
ing. Memory & Cognition, 23 , 569–580. doi:10.3758/bf03197259.

Kraljic, T., & Samuel, A. G. (2006). Generalization in perceptual learning for speech. Psychonomic
Bulletin & Review , 13 , 262–268. doi:10.3758/BF03193841.

Luce, R. D. (1959). Individual Choice Behavior: A Theoretical Analysis. New York, NY: Wiley.

Medin, D. L., & Schaffer, M. M. (1978). Context theory of classification learning. Psychological
Review , 85 , 207–238. doi:10.1037/0033-295X.85.3.207.

Morton, J. (1969). Interaction of information in word recognition. Psychological Review , 76 ,
165–178. doi:10.1037/h0027366.

Murray, W. S., & Forster, K. I. (2004). Serial mechanisms in lexical access: the rank hypothesis.
Psychological Review , 111 , 721–756. doi:10.1037/0033-295X.111.3.721.

Norris, D., & McQueen, J. M. (2008). Shortlist B: a Bayesian model of continuous speech recogni-
tion. Psychological Review , 115 , 357–395. doi:10.1037/0033-295X.115.2.357.

Norris, D., McQueen, J. M., & Cutler, A. (2003). Perceptual learning in speech. Cognitive psychol-
ogy , 47 , 204–238. doi:10.1016/S0010-0285(03)00006-9.

Nosofsky, R. M. (1985). Overall similarity and the identification of separable-dimension stimuli: a
choice model analysis. Perception & Psychophysics, 38 , 415–432. doi:10.3758/BF03207172.

Nosofsky, R. M. (1986). Attention, similarity, and the identification-categorization relationship.
Journal of Experimental Psychology: General , 115 , 39–61. doi:10.1037/0096-3445.115.1.39.

Nosofsky, R. M. (1991). Tests of an exemplar model for relating perceptual classification and
recognition memory. Journal of Experimental Psychology: Human Perception and Performance,
17 , 3–27. doi:10.1037/0096-1523.17.1.3.

Pierrehumbert, J. B. (2001). Exemplar dynamics: Word frequency, lenition and contrast. In
J. Bybee, & P. Hopper (Eds.), Frequency and the emergence of linguistic structure (pp. 137–
157). Amsterdam: John Benjamins.

Pierrehumbert, J. B. (2002). Word-specific phonetics. In C. Gussenhoven, & N. Warner (Eds.),
Laboratory Phonology VII (pp. 101–139). Berlin: Mouton de Gruyter.

Pierrehumbert, J. B., & Granell, R. (2018). On hapax legomena and morphological productiv-
ity. In Proceedings of SIGMORPHON 2018 . Stroudsburg, PA: Association for Computational
Linguistics.

Schulman, A. I. (1967). Word Length and Rarity in Recognition Memory. Psychonomic Science,
9 , 211–212. doi:10.3758/BF03330834.

Shepard, R. N. (1958). Stimulus and response generalization: Deduction of the generalization
gradient from a trace model. Psychological Review , 65 , 242–256. doi:10.1037/h0043083.

48

http://dx.doi.org/10.2307/416697
http://dx.doi.org/10.3758/bf03197259
http://dx.doi.org/10.3758/BF03193841
http://dx.doi.org/10.1037/0033-295X.85.3.207
http://dx.doi.org/10.1037/h0027366
http://dx.doi.org/10.1037/0033-295X.111.3.721
http://dx.doi.org/10.1037/0033-295X.115.2.357
http://dx.doi.org/10.1016/S0010-0285(03)00006-9
http://dx.doi.org/10.3758/BF03207172
http://dx.doi.org/10.1037/0096-3445.115.1.39
http://dx.doi.org/10.1037/0096-1523.17.1.3
http://dx.doi.org/10.3758/BF03330834
http://dx.doi.org/10.1037/h0043083


Smith, N. J., & Levy, R. (2013). The effect of word predictability on reading time is logarithmic.
Cognition, 128 , 302–319. doi:10.1016/j.cognition.2013.02.013.

Sóskuthy, M. (2013). Phonetic biases and systemic effects in the actuation of sound change. Un-
published doctoral dissertation. University of Edinburgh.
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