
Word frequency effects in sound change as a consequence of

perceptual asymmetries: An exemplar-based model

Code Documentation

Simon Todd, Janet B. Pierrehumbert, Jennifer Hay

Contents

D1 Files 1

D2 Running the model 2

D3 Plotting results 4

D4 Combining the results of many runs 5

D5 Changing model settings 6

D6 Initial conditions 7

D1 Files

We have provided the code used to run the model. The files included are as follows:

exemplar model.py Used to run the model (see Section D2).

exemplar plotter.py Used to plot model runs (see Section D3).

combine dataframes.py Used to combine summaries from many runs (see Section D4).

settings.json Used to change the model settings (see Section D5). The provided file contains
the settings used for the final runs of the model in the paper.

initial data.json The initial conditions used to start the model (see Section D6). The
provided file contains the initial conditions used for two-category model runs in Section 5 of
the paper.

initial data 1cat.json The initial conditions used for single-category model runs in Section
4 of the paper.

1



initial data 2xtypes.json The initial conditions for a system with twice as many types and
exemplars as the one used in the paper, as reported in Section S3.2 of the Supplementary
Materials.

initial data biastogether.json The initial conditions for a system with categories biased
together, as reported in Section S3.3.1 of the Supplementary Materials.

initial data minpairs-10pc.json The initial conditions used for a system where 10% of
types are in a minimal pair relation, as reported in Sections S3.4.2–S3.4.3 of the Supplemen-
tary Materials. To use this file, also set "shuffleFrequencies":true in settings.json.

initial data minpairs-all.json The initial conditions used for a system where all types are
in a minimal pair relation, as reported in Section S3.4.4 of the Supplementary Materials. To
use this file, also set "shuffleFrequencies":true in settings.json.

exemplar analysistools.py Tools used to analyze model properties (used internally).

exemplar iotools.py Tools used for reading and writing files (used internally).

exemplar representations.py Code for representations in the model (used internally).

submit-moab.sh A sample bash script to submit runs in parallel to a cluster with Moab work-
load management (see Section D2.1).

submit-slurm.sh A sample bash script to submit runs in parallel to a cluster with Slurm
workload management (see Section D2.1).

The .py files in the distribution should all be kept in the same directory. The .json files may
be placed in other directories, but the path to those directories will have to be provided in the
appropriate places in the settings file / from the command line.

The code was written in Python 2.7.11, utilizing the following packages that are not part of the
Python Standard Library: pandas (0.18.0); numpy (1.10.4); matplotlib (1.5.1); scipy (0.17.1).
We cannot guarantee that the code will work with older versions of these packages.

The code has been written to be compatible with Python 2.6+ and Python 3+, with the help
of methods from the six and builtins packages, which should be part of any standard up-to-
date Python installation. If you experience unexplained errors when you run the code, please try
installing a new version of Python.

For users who do not already have a Python installation, we recommend Enthought Canopy,
which comes pre-installed with the packages required for running the model and associated tools.
Canopy can be freely downloaded from https://store.enthought.com/downloads/.

D2 Running the model

To run the model, open the command prompt (Windows) or terminal (macOS/Linux) and navigate
to the directory where the code is located. Type

python exemplar model.py

to run the model with the default settings.
The basic options for running the model are as follows (defaults indicated in parentheses):

--settings-path (settings.json) The path to the settings file (see Section D5).

2

https://store.enthought.com/downloads/


--logs-path (Logs) The path to the directory where the summary logs will be saved (see
Section D2.2).

--dump-exemplars If provided, this option causes the exemplar space to be saved as the model
is run, allowing it to be plotted later (see Section D3).

--dumps-path (Dumps) The path to the directory where the exemplar space will be saved, if
--dump-exemplars is provided.

To provide a value for the option, type the option name and the value after the call to run the
model, as in the following example:

python exemplar model.py --dump-exemplars --dumps-path NewDumps

D2.1 Running the model in parallel

Several advanced options allow different model runs to be split up for parallel processing. The runs
are split across pools (corresponding to nodes in a cluster), and each pool is handled by multiple
processes (corresponding to processors on a node). The advanced options are as follows (defaults
indicated in parentheses):

--pools (1) The number of pools to split the runs across.

--processes-per-pool (1) The number of processes to launch per pool.

--pool-number (0) The number of the current pool.

To run the model in parallel on a single computer, use the --processes-per-pool option. To
run the model in parallel on a cluster, also use the --pools option and tell your workload manager
to iterate through nodes providing different --pool-number options.

We have provided sample bash scripts to illustrate submission to clusters managed by Moab
and Slurm. Note that these scripts assume that a compatible python module has already been
loaded and may need to be updated to reflect specifics of your use, e.g. your account details for
the cluster.
To submit to a cluster managed by Moab, enter in the terminal:

msub -t [0-<x>] submit-moab.sh

To submit to a cluster managed by Slurm, enter in the terminal:
sbatch -a 0-<x> submit-slurm.sh

In both cases, replace <x> with the number of pools, minus one. For the scripts we have provided,
we set the number of pools to be the total number of parameter combinations multiplied by the
number of repeats, divided by four. For the settings.json file we have provided, there are 90
total parameter combinations (18 sets of values for (σ, µ, β, ι, α, δ) × 5 values for deltaDiff) and 10
repeats, yielding 225 (90× 10/4) pools; thus <x> in this case would be replaced with 224 (225− 1).

D2.2 Model output

The basic output of the model is a .csv file containing the following summary information at regular
iteration intervals for each category, both across the category as a whole and separately across low-
and high-frequency types:

• centroid of the distribution;

3



• width (standard deviation) of the distribution;

• mode of the distribution;

• peak activation of the distribution;

• skewness of the distribution;

• kurtosis of the distribution.

Additionally, the model calculates the following summary information for every pair of categories
in the input:

• width of the overlap between the two categories, measured as the span of the overlapping
region;

• number of exemplars whose values fall in the overlapping region, as a proportion of the total
number of exemplars in the two categories;

• area contained within the intersection of the two category distributions, as a proportion of
the total area underneath either distribution.

The difference between the number of exemplars in the overlapping region and the area contained
within the intersection of the two categories is that, for each point in the acoustic space, the number
calculation counts all exemplars from both categories at that point, while the area calculation
counts only the exemplars from the category with fewer exemplars at that point. This difference
is accounted for in the way that proportions are taken, so that, in each case, a value of 1 would
indicate that the categories are identical, while a value of 0 would indicate that they have no overlap
whatsoever.

When there are multiple runs of the same model (using the setting runsPerSetting; see
Section D5), they are all combined in a single .csv file, but repeated runs (using the setting
repeatsPerRun; see Section D5) are stored in separate files, and runs of different models (i.e.
with different parameters) are also stored in separate files. These separate files can be combined
using combine-dataframes.py; see Section D4.

When the --dump-exemplars option is provided, at each iteration, each run of the model addi-
tionally outputs a log of all of the exemplars in the space at that time, following the format outlined
in Section D6. These files are used to create plots of the distributions with exemplar plotter.py,
as outlined in Section D3.

D3 Plotting results

If the --dump-exemplars option was provided when the model was run, the output dumps of the
exemplar space can be used to plot the exemplar distributions and activation fields (at regularly-
spaced iterations). For this, run exemplar plotter.py, which takes the following options (defaults
indicated in parentheses):

--settings-path (settings.json) The path to the settings file originally used to run the
model.

--dumps-path (Dumps) The path to the directory where the exemplar space was saved.

4



--plots-path (Plots) The path to the directory where the plots will be saved.

--plot (Activations) What you want to plot: Activations (the activation fields), Distributions
(the raw exemplar distributions), or Both.

--no-exemplars By default, plots of the activation field overlay a rug of exemplars at the
bottom. Providing this option removes that rug.

--separate-runs By default, all separate runs/repeats of the same model parameters are
averaged and presented together in one plot. Providing this option instead generates a unique
plot for each run/repeat.

--plot-freqs By default, the entirety of each category distribution is used for plots. Providing
this option instead uses the low- and high-frequency sub-distributions.

--ymax The maximum value to be plotted on the y-axis, across all plots. By default, a unique
value is chosen for each plot, which may make plot comparison difficult.

For example, to create plots of activation fields for the frequency sub-distributions of exemplars,
averaged over many model runs, and hide the exemplar rug, type the following at the command
line:

python exemplar plotter.py --no-exemplars

Note that creating plots in this way requires the original settings file still to exist. We recom-
mend giving each settings file a unique name and/or putting it in its own directory with the output
that it generated.

D4 Combining the results of many runs

The summary logs for repeated model runs (using the setting repeatsPerRun; see Section D5) are
stored in separate files, as are the logs for runs of different models (i.e. with different parameters).
These separate files can be combined using combine-dataframes.py, provided they are all in the
same directory. There are two options, as follows (defaults indicated in parentheses):

--dir (Logs) The name of the directory where the summaries are contained.

--outcsv (combined summary.csv) The name that the processed file will be saved under.

In processing, the .csv files in the provided directory are combined, and the unique1 parameter
values they were generated with are saved as columns in the .csv. After processing, all processed files
are deleted, and the new summary .csv is saved in the same directory. This combined summary file
can be imported into statistical analysis software for investigating the effects of different parameter
settings.

Note that all .csv files in the directory will be processed; for this reason, please ensure that
summaries for different investigations each are placed in their own, unique folder.

1If you want to include non-unique parameter values in the output .csv, those parameter values have to be provided
as lists with single elements in the settings file when running the model (see Section D5).

5



D5 Changing model settings

The file settings.json contains the settings used in launching the model, which are as follows:

dataPath The path to the initial conditions file (see Section D6).

iterations The number of iterations to run the model for.

dumpEvery The number of iterations between successive logs of the model.

runsPerSetting The number of times to run the model with the same setting, within the same
call to the code. Cannot be split across processes.

repeatsPerRun The number of times the model runs will be repeated, across different calls
to the code. The logs for each repeated run will be marked separately. Repeated runs can
be split across processes, but are slow to initialize; for this reason, it is efficient to balance
runsPerSetting and repeatsPerRun.

sigma The initial width of categories.

mu The initial distance between categories.

beta The size of the bias per iteration.

iota The amount of noise added to productions.

alpha The size of the perceptual window for activating exemplars.

delta The discriminability threshold (for median-frequency types). When the discriminability
threshold is a function of type frequency, this parameter sets the value of λ.

deltaDiff The difference between the discriminability threshold for high/low-frequency types
and the discriminability threshold for median-frequency types (the threshold decreases linearly
with frequency; for example, if delta=0.5 and deltaDiff=0.5, then the lowest-frequency
types have discriminability threshold 1, the median-frequency types have discriminability
threshold 0.5, and highest-frequency types have discriminability threshold 0). In the Supple-
mentary Materials, we refer to this parameter as φ.

tau The typicality threshold (for median-frequency types). When the typicality threshold is a
function of type frequency, this parameter sets the value of κ.

tauDiff The difference between the typicality threshold for high/low-frequency types and the
typicality threshold for median-frequency types (the threshold increases linearly with fre-
quency; for example, if tau=0.5 and tauDiff=0.5, then the lowest-frequency types have
typicality threshold 0, the median-frequency types have typicality threshold 0.5, and highest-
frequency types have typicality threshold 1). In the Supplementary Materials, we refer to
this parameter as ψ.

epsilon The size of the entrenchment window.

chi The factor determining the extent to which nonwords compete with real words during
the discriminability evaluation. Must be between 0 (no competition) and 1 (competition as
expected based on category activation).

6



spaceMin The smallest possible value in the exemplar space.

spaceMax The largest possible value in the exemplar space.

spacePoints The number of discretized points to create in the exemplar space, linearly spaced
between the minimum and maximum values.

shuffleWords A Boolean flag indicating whether exemplars should be shuffled across types in
the same frequency bin on different runs. This should be true unless you want to investigate
results that are particular to a given initial assignment of exemplars to types.

shuffleFrequencies A Boolean flag indicating whether frequencies (and corresponding sets
of exemplars) should be shuffled across types in the same category on different runs. This
should be false unless you want to explore the consequences of introducing minimal pairs,
independent of the frequency ratios between types in minimal pair relations.

freqBins A dictionary specifying the type frequencies that belong in each frequency bin (used
for shuffling exemplars and for generating sub-distribution summary statistics).

The file we provided with the distribution contains the settings we used for the final models in
the paper. Note that, in all investigations in the paper, we kept epsilon and tauDiff both fixed
at 0.

To perform runs for different values of a parameter, provide a list of values for the parameter.
For example,

"sigma": [0.6, 0.8, 1.0]

would perform runs for σ ∈ {0.6, 0.8, 1.0}.
When multiple different parameters are given multiple values in this way, all combinations of

those parameter values are run. For example,
"sigma": [0.6, 0.8, 1.0],

"iota": [0.5, 0.6]

would perform runs for six pairs: (σ, ι) ∈ {(0.6, 0.5), (0.8, 0.5), (1.0, 0.5), (0.6, 0.6), (0.8, 0.6), (1.0, 0.6)}.
To include only certain combinations of parameters, they can be specified jointly. For example,
"sigma,iota": [[0.6, 0.5], [0.8, 0.6]]

would perform runs for only two pairs: (σ, ι) ∈ {(0.6, 0.5), (0.8, 0.6)}.
The parameters that have multiple values are those that will be noted in the creation of summary

logs. To also include parameters with only a single value, enclose that single value in square brackets.
For example,

"tau": [0.1]

would perform runs only with τ = 0.1, but would create a column for tau populated by 0.1 when
later running combine dataframes.py.

D6 Initial conditions

The initial distribution of exemplars across types and categories is provided by initial data.json.
This file is formatted as a dictionary with category names as keys, mapping to category dictionaries.
Each category dictionary has a bias key, which indicates how much relative bias the category should
be subjected to (i.e. how many times β should be added to productions from this category), an
adjustment key, which indicates how much relative adjustment the category should receive at
initialization (i.e. how many times each exemplar in the category should have µ added to its value

7



when first loading the system), and a words key mapping to word type dictionaries. The keys of
the word type dictionary are the names of word types, which map to dictionaries specifying the
frequency of the type and list of exemplars (values) used to initialize the type (the number of
entries in this exemplar list should be equal to the frequency of the type).

For example, in initial data.json distributed with the code, there are two categories (outer
keys): Pushee and Pusher. The Pushee is subject to no bias ("bias": "None") and no initial
adjustment ("adjustment": 0), and contains word types such as Pushee F9T5 and Pushee F2T8.
Pushee F9T5 has frequency 9 ("frequency": 9), and 9 initial exemplars, with values 0.1, -1.6,
-0.2, 0.1, 0.1, 0.4, 0.2, 0.3, and -1.0.

Dumps of the exemplar space used to generate plots have the same format as this file. The
adjustment field is set to 0 for every category during dumps, so that the dumped files can be
re-used to initialize new runs exactly as-is, without interference from the parameter µ.

To properly utilize the parameters τ and µ (controlling initial category width and distance
respectively), each initial distribution should have standard deviation 1 and centroid 0, and one of
the categories should have an adjustment value of ±1 (here, Pusher has adjustment −1, indicating
that µ is subtracted from each exemplar’s value at initialization).

The file initial data.json distributed with the code contains the initial distributions used
for the two-category simulations in the paper, while initial data 1cat.json contains the initial
distributions used for the single-category simulations in the paper. The other four files contain the
initial distributions used for additional runs reported in Section S3 of the Supplementary Materials,
where they differ from the initial distributions using in the paper. initial data 2xtypes.json

contains the initial distributions for a system with twice as many types and exemplars as the system
in the paper (Section S3.2 of the Supplementary Materials). initial data biastogether.json

contains the initial distributions for a system with two categories (the two from the paper) that are
biased together (Section S3.3.1 of the Supplementary Materials). initial data minpairs-10pc.json

contains the initial distributions for a system where 10% of types are in a relevant minimal pair rela-
tion (Sections S3.4.2–S3.4.3 of the Supplementary Materials). initial data minpairs-10pc.json

contains the initial distributions for a system where all types are in a relevant minimal pair relation
(Section S3.4.4 of the Supplementary Materials).

8


	 Files
	 Running the model
	 Plotting results
	 Combining the results of many runs
	 Changing model settings
	 Initial conditions

