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A B S T R A C T

Empirically-observed word frequency effects in regular sound change present a puzzle: how can high-frequency
words change faster than low-frequency words in some cases, slower in other cases, and at the same rate in yet
other cases? We argue that this puzzle can be answered by giving substantial weight to the role of the listener.
We present an exemplar-based computational model of regular sound change in which the listener plays a large
role, and we demonstrate that it generates sound changes with properties and word frequency effects seen in
corpora. In particular, we consider the experimentally-supported assumption that high-frequency words may be
more robustly recognized than low-frequency words in the face of acoustic ambiguity. We show that this as-
sumption allows high-frequency words to change at the same rate as low-frequency words when a phoneme
category moves without encroaching on the acoustic space of another, faster than low-frequency words when it
moves toward another, and slower than low-frequency words when it moves away from another. We discuss how
these predicted word frequency effects apply to different types of sound changes that have been observed in the
literature. Importantly, these frequency effects follow from assumptions regarding processes in perception, not
production. Frequency-based asymmetries in perception predict different frequency effects for different kinds of
sound change.

1. Introduction

Language, as a system of communication, relies upon both speakers
and listeners. People spend more time listening than speaking (e.g.
Emanuel et al., 2008, & references therein), and listeners bring an array
of perceptual biases to the understanding of speech (e.g. Connine,
Titone, & Wang, 1993; Ganong, 1980; Hay, Warren, & Drager, 2006;
Hay & Drager, 2010; Kleinschmidt & Jaeger, 2015; Niedzielski, 1999;
Pitt & Samuel, 1993; Strand & Johnson, 1996). Moreover, speech that is
listened to is stored in memory (e.g. Goldinger, 1996) and can affect
future speech production and perception (see e.g. for production:
Fowler, Brown, Sabadini, & Weihing, 2003; Goldinger, 1998; Nielsen,
2011; Pardo, 2006; and for perception: Bradlow & Bent, 2008; Clarke-
Davidson, Luce, & Sawusch, 2008; Dahan, Drucker, & Scarborough,
2008; Kraljic & Samuel, 2006; Norris, McQueen, & Cutler, 2003). Lis-
tening is a crucial component of in-the-moment communication. It is
therefore plausible that patterns of sound change may be substantially
shaped by the listener. However, most theories of sound change are

driven by the role of the speaker, even if they acknowledge the re-
levance of the listener.

Functionalist linguists have long identified the relevance of per-
ceptual constraints to linguistic sound systems (e.g. Flemming, 2004;
Liljencrants & Lindblom, 1972; Martinet, 1952). They have typically
done this by taking into account the speaker’s awareness of the po-
tential difficulties they may cause for the listener; the speaker knows
that using phonetically ambiguous sounds could cause communication
to fail, and thus tends to avoid them (e.g. Buz, Tanenhaus, & Jaeger,
2016; Lindblom, 1990). While such listener-oriented, speaker-based
approaches insightfully highlight the relevance of the listener, they may
overpredict the speaker’s avoidance of ambiguity (e.g. Arnold, Wasow,
Asudeh, & Alrenga, 2004; Bard et al., 2000), and they have been cri-
ticized as teleological (e.g. Wedel, 2006).

An alternative approach, which we take here, is to acknowledge that
listeners are also speakers, and thus that any change to cognitive re-
presentations of sound categories due to passive perceptual processes in
the listener will be reflected in the speech of that listener-turned-
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speaker. This approach was originally presented by Ohala (1981) with a
model of categorical change in particular words via misperception of
sounds in their phonological environments. It can be extended to model
gradient change in all words via biases involved in the correct per-
ception of spoken words, as illustrated by Harrington, Kleber, Reubold,
Schiel, and Stevens (2018). We implement such an extension, drawing
on gradient perceptual robustness rather than categorical mispercep-
tion as a driving mechanism, and placing primary focus on the lexical
rather than phonological context of sounds under perceptual scrutiny
(following a school of thought dating back to Courtenay, 1895).

We focus on a particular kind of change, regular sound change, de-
fined as the gradual transformation of the phonetic realization of a
phoneme over time (Labov, 2010). We develop a computational model
that assumes that the listener plays a large role in regular sound change,
drawing on experimentally-supported perceptual processes. We show
that our model successfully captures empirically-attested patterns that
cannot be readily explained via emphasis solely on the speaker. In
particular, we focus on the rate1 at which words of different frequencies
participate in regular sound change, for which different approaches to
sound change make different predictions.

According to the Neogrammarian hypothesis (see e.g. Garrett,
2015), regular sound change affects all eligible words in the same way –
and thus at the same rate, regardless of frequency. This lexical in-
dependence in sound change follows from the assumption of strict
modularity, where the representation of the phoneme is independent of
its instantiation in words. Under this assumption, regular sound change
involves changes to the phoneme representation rather than to words
directly.

By contrast, recent usage-based approaches relax the assumption of
strict modularity, contending that the instantiation of the phoneme
within words is central to the way that the phoneme is represented both
cognitively and theoretically (e.g. Beckner et al., 2009; Blevins &
Wedel, 2009; Bybee, 2002; Harrington et al., 2018; Hay,
Pierrehumbert, Walker, & LaShell, 2015; Hay & Foulkes, 2016;
Johnson, 1997; Pierrehumbert, 2001, 2002; Wedel, 2006, 2012). Such
approaches assume that the instances of the same phoneme in different
words may have different (but related) representational bases. Conse-
quently, while sound change is expected to affect all words containing
the changing phoneme over a certain period of time, it is not assumed
to affect all words at the same rate.

In particular, the Frequency Actuation Hypothesis (henceforth,
FAH; Bybee, 2002; Phillips, 1984) claims that word frequency effects2

will be different in different kinds of sound change, depending on the
motivation of the change. Phillips (1984) presents a two-way distinc-
tion between physiologically motivated changes and non-physiologi-
cally motivated changes. Physiologically motivated changes result from
the iteration of articulatory biases and affect the surface phonetic form
of phonological segments. An example is /t/-tapping, where a word like
matter comes to sound more like madder, reducing articulatory effort. In
physiologically motivated sound changes, high-frequency words are
predicted to change faster than low-frequency words, since they are
produced and thus subjected to the articulatory bias more often. Non-
physiologically motivated changes result from lexical analogy of sound

patterns to new environments and yield new constraints on underlying
phonological or phonotactic structures. An example is the deletion of
glides after coronal stops /t d n/, where a word like tune comes to sound
more like toon, generalizing the constraint banning glides after other
coronal consonants (Phillips, 1981). In non-physiologically motivated
sound changes, high-frequency words are predicted to change more
slowly than low-frequency words, since their frequent use allows them
to persist as exceptions in the phonological grammar.

The most intuitive application of the FAH to regular sound change
makes the assumption that gradient phonetic change results primarily
from iterated biases in the speaker’s phonetic implementation, and thus
predicts that high frequency words should always change faster than
low-frequency words. This prediction found support in early usage-
based modeling work by Pierrehumbert (2001), in which the speaker
was central. However, it does not hold uniformly in empirical data. We
are aware of three corpus studies of word frequency effects on rates of
sound change across the lexicon.3 One of these studies found a result
that is inconsistent with predictions of the FAH while not directly op-
posing them: Bermúdez-Otero, Baranowski, Bailey, and Turton (2015)
found that /t/-glottaling in Manchester English is affecting words of all
frequencies at the same rate. Another found a result that is fully con-
sistent with predictions of the FAH: Hay and Foulkes (2016) found that
/t/-tapping in New Zealand English is affecting high-frequency words
faster than low-frequency words. The final study, however, found a
result that opposes predictions of the FAH: Hay et al. (2015) found that
/ɛ/-raising (and other processes in the same vowel shift) in New
Zealand English affected high-frequency words slower than low-fre-
quency words. We discuss these three changes in more detail in Section
2.1; for now, we simply note that the FAH does not give considerable
reason to treat them differently. The existence of different effects of
word frequency on rate of change in different kinds of change remains
an unsolved puzzle in studies of regular sound change.

We propose that these differences can be understood by making the
listener central to regular sound change. We hypothesize that asym-
metries in the rates with which regular sound change affects different
words follow from experimentally-supported asymmetries in the ro-
bustness with which those words can be recognized: high-frequency
words can be recognized more robustly than low-frequency words in
the face of acoustic ambiguity. We further hypothesize that different
asymmetries are observed in different kinds of regular sound change
because of the different implications they have for the acoustic ambi-
guity of the involved phonemes. High-frequency words change at the
same rate as low-frequency words when a phoneme moves without
encroaching on the acoustic space of another, with no bearing on
acoustic ambiguity; faster than low-frequency words when a phoneme
moves toward another, potentially increasing acoustic ambiguity; and
slower than low-frequency words when a phoneme moves away from
another, potentially decreasing acoustic ambiguity. This paper develops
a computational model that allows us to test these hypotheses and to
derive general predictions for the effects of word frequency in other
cases of regular sound change.

The remainder of this paper is structured as follows. In Section 2, we
give an overview of the three existing corpus-based investigations of
word frequency effects on rate of change, the general considerations we
take away for modeling such changes, and the framework in which our
model is based. In Section 3, we lay out the basic model and discuss
how it generates sound change. In Section 4, we show how the model
generates sound changes with implications for just a single phoneme,

1 Traditionally, linguists have considered the effects of word frequency on the
actuation of sound change – i.e. whether high- or low-frequency words change
first. We focus instead on rates of change – i.e. whether high- or low-frequency
words change fastest – because they can be identified more easily and robustly
in corpora without extensive time depth (as a statistical interaction between
word frequency and time), and because they allow for easier disentanglement of
change from natural phonetic variation in a continuous acoustic system.
2 The FAH was originally posited with reference to the question of whether

high- or low-frequency words change first. For the reasons previously outlined,
we reinterpret it to generate predictions about whether high- or low-frequency
words change fastest, under the assumption that change begins from neutral
initial conditions.

3 We include only studies that aggregate across the lexicon because the as-
sumption that speech and/or sound change contain stochastic elements implies
that sampling a few words is not sufficient to reflect upon the existence of
statistical tendencies tied to word frequency. For this reason, we exclude from
consideration a study by Tamminga (2014), which explores /ai/-raising in
Philadelphia English for various senses of like.
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and we discuss the model’s predictions of word frequency effects in this
case. In Section 5, we show how the model generates sound changes
with implications for two phonemes, and we show that enhancing the
model with a bias for recognizing high-frequency words more robustly
than low-frequency words generates word frequency effects on rate of
change that are consistent with the empirical evidence. In Section 6, we
discuss the implications of this result and the predictions it makes for
other kinds of sound change. The paper concludes in Section 7.

2. Overview

We develop our model to show how an emphasis on the listener can
predict different effects of word frequency on rate of change in different
kinds of regular sound change. For concrete empirical grounding, we
focus on the three existing studies of different sound changes that
consider such effects, and we aim to show that experimentally-sup-
ported perceptual processes can explain the differences between them.
For simplicity, we aim not to model the full details of each change, but
rather to capture certain key properties of each change, both frequency-
independent and frequency-based. In this section, we describe the re-
levant data from each change, how we choose to model the changes, the
desiderata that the data yield for our model, and the general approach
that must be taken by any model aiming to meet these desiderata.
Finally, we introduce the specific modeling framework that we use to
implement this approach, Exemplar Theory.

2.1. Empirical sound change data

Our model aims to capture key results from the three existing stu-
dies of regular sound change that consider word frequency effects on
rate of change, across the lexicon: /t/-glottaling in Manchester English
(Bermúdez-Otero et al., 2015), /t/-tapping in New Zealand English
(Hay & Foulkes, 2016), and /ɛ/-raising in the short front vowel shift of
New Zealand English (Hay et al., 2015).

/t/-glottaling refers to a sound change whereby /t/ between vowels
becomes increasingly likely to be realized as a glottal stop /ʔ/4; an
example is mitten coming to be pronounced as “mi’en”. Bermúdez-Otero
et al. (2015) present a study of /t/-glottaling in Manchester English,
which finds that the use of /t/-glottaling has increased over time.
Crucially, while high-frequency words exhibit more /t/-glottaling at
every point of time, words of all frequencies have changed at the same
rate.

/t/-tapping is also a sound change that affects the realization of /t/
between vowels. Under tapping, intervocalic /t/ is weakened to a
shorted voiced sound that may be notated [ɾ] or [d]; an example is
matter coming to be pronounced more like “madder”. Hay and Foulkes
(2016) present a study of /t/-tapping in New Zealand English, which
finds that the use of /t/-tapping has increased over time. Crucially,
unlike for /t/-glottaling in Manchester English, high-frequency words
have exhibited this change at a faster rate than low-frequency words.

Unlike the other sound changes, /ɛ/-raising affects vowels, not
consonants. It causes the vowel /ɛ/ to be pronounced with the tongue
higher in the mouth, making New Zealand bet sound to non-New
Zealanders like “bit”. This process is part5 of a push chain, where one
phoneme (in this case, /æ/) moves toward another (/ɛ/) in acoustic

space and pushes it along a related trajectory of change. Hay et al.
(2015) present a study of the New Zealand short front vowel shift, the
larger push chain of which /ɛ/-raising is a component. Crucially, they
find an effect of word frequency on rate of change which is different to
that seen in the previous two studies: high-frequency words have
changed slower than low-frequency words.

2.2. Modeling the sound changes

The sound changes outlined in Section 2.1 are complex, and mod-
eling them in full detail far exceeds the scope of this paper. Instead, we
aim to construct a model whose output resembles them at a high level.
Here, we describe the way that we choose to model the three sound
changes.

We choose to model /t/-glottaling as directed phonetic drift in the
realization of a single, isolated phoneme. We make the decision to treat
/t/-glottaling as isolated because it only affects /t/ and because it
produces realizations that remain unlike any other phoneme of English
(as there is no phoneme /ʔ/). Thus, we identify /t/-glottaling with a
system containing a single phoneme category subject to a consistent
production bias. We ultimately expect our model to show movement of
high- and low-frequency words in this phoneme category at the same
rate.

Unlike /t/-glottaling, /t/-tapping produces realizations that are
more like those of an existing phoneme of English, /d/. Consequently, it
is not sufficient to think of /t/-tapping as isolated; rather, the presence
of the competing phoneme /d/ must also be acknowledged. However,
since the empirical data of interest concern /t/ and not /d/, we are only
fundamentally concerned with modeling the implications of the ex-
istence of /d/ for the changes in /t/, and not with modeling the behavior
of /d/ itself. Thus, we identify /t/-tapping with a system containing two
phoneme categories where one is biased toward the other, and we focus
on the phoneme category subject to the bias. We ultimately expect our
model to show faster movement of high-frequency words in this pho-
neme category than of low-frequency words.

The presence of competing phonemes is also relevant to /ɛ/-raising.
For simplicity, we abstract from the full push chain to an interaction
between just two phonemes, /æ/ and /ɛ/, along a single dimension
(height). It is a consequence of this simplification that we cannot model
the behavior of /æ/, only of /ɛ/ (see Appendix A.1 for discussion).
Thus, we identify /ɛ/-raising with a system containing two phoneme
categories where one is biased toward the other, and we focus on the
phoneme category which is not subject to the bias. We ultimately ex-
pect our model to show slower movement of high-frequency words in
this phoneme category than of low-frequency words.

For convenience, we choose to model the elements of interest from
/t/-tapping together with those from /ɛ/-raising. That is, we create a
single system of exemplars belonging to two interacting phonemes, and
we base our expectations for the behaviors of the two different pho-
nemes on the two different kinds of change. For ease of reference, we
designate the biased phoneme category the Pusher and the other pho-
neme category the Pushee. A model of word frequency effects in /t/-
tapping needs to focus on the Pusher, while a model of the observed
word frequency effects in /ɛ/-raising needs to focus on the Pushee.
Viewing the encroachment of the Pusher on the Pushee as analogous to
the encroachment of /t/ on /d/ in New Zealand English /t/-tapping, we
expect the model to show faster movement of high-frequency words
than of low-frequency words in the Pusher. Similarly, viewing the re-
treat of the Pushee from the Pusher as analogous to the retreat of /ɛ/
from /æ/ in the New Zealand short front vowel shift, we expect the
model to show slower movement of high-frequency words than of low-
frequency words in the Pushee.

We also make the simplifying assumption of ignoring minimal pairs,
i.e. words such as bat and bet which are distinguished solely by the
phonemic distinction at the heart of the sound change in question. We
make this choice not because we think that minimal pairs are irrelevant

4 Realization of /t/ as /ʔ/ entails the removal of oral gestures. This phe-
nomenon, also known as glottal replacement, is common across British varieties
of English and almost exclusively affects /t/ (see e.g. Milroy, Milroy, Hartley, &
Walshaw, 1994, for evidence from Tyneside English). It is articulatorily and
acoustically distinct from the application of glottal constriction to oral gestures
(glottal reinforcement), which more commonly affects /p/ and /k/.
5 While the larger push chain has implications for multiple phoneme cate-

gories, we focus here on establishing a thorough understanding of the /ɛ/-
raising component because it is least affected by model simplifications (see
Appendix A.1 for discussion).
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to regular sound change, but rather because we believe that they alone
are unlikely to explain the properties that hold across all words in a
phoneme category, such as frequency effects. This belief is supported by
both empirical evidence and simulations, which we discuss in Appendix
A.2.

Because our model is based on specific cases of sound change only at
a high level, it extends beyond these cases to schematize word fre-
quency effects in single-category movements and two-category inter-
actions in general. Of course, some instances of regular sound change
cannot be treated as single-category movement or two-category inter-
action, or have other properties that do not meet with our simplifying
assumptions (see Appendix A.1). Nevertheless, the broad insights of our
model are widely applicable and constitute a necessary foundation for
understanding the dynamics of highly complex instances of regular
sound change.

2.3. Model desiderata

It is clear that capturing word frequency effects on rates of change
will require a phoneme to have different, but related, representational
bases for different words. What other requirements do the empirical
data present for our model?

Before investigating word frequency effects, we require our model
to generate single-category movements and two-category interactions
that resemble the empirical sound changes reviewed in Section 2.1 at a
high level. Thus, we require the model to produce certain key fre-
quency-independent properties, which we infer on the basis of the data
from the New Zealand short front vowel shift.6

These key properties relate to the maintenance of structure over the
course of change. As vowel distributions moved in the New Zealand
short front vowel shift, they maintained their distance from one an-
other, their shapes (width and skewness), and their degree of overlap
with one another. At all times, they exhibited little skewness and sub-
stantial overlap relative to their widths; such properties are also seen in
vowels in American English (Hillenbrand, Getty, Clark, & Wheeler,
1995). We illustrate these key properties for /æ/ and /ɛ/ over a 60-year
period of the data in Fig. 1.

The basic desiderata for our model are therefore that it: (i) generates
movement of each category; (ii) maintains the shape (width and
skewness) of each category; and, in two-category interactions, main-
tains the (iii) distance between and (iv) overlap of the categories. To
our knowledge, no other exemplar-based model has met all these de-
siderata, so this is an important way in which our model makes a basic
contribution, independent of word frequency effects.

Though a computational model is the only way in which to test
causal hypotheses in the study of sound change, such tests can only bear
on real sound change to the extent that the model captures empirically-
observable key properties of sound systems and sound change. Thus,
meeting the model desiderata is a necessary precursor to our in-
vestigation of word frequency effects on rates of change.

2.4. Meeting desiderata: general approach

What must a model do to meet the desiderata from Section 2.3? A
high-level demonstration can be given by considering forces that act
upon the phoneme category distributions (Fig. 2).

A model which meets our desiderata must instantiate and balance a
number of forces. A model of a single-category system must initiate and

balance an intrusive force, a spreading force, and a squeezing force. A
model of a two-category system must initiate and balance these three
forces, plus a fourth, repulsive force. Since the single-category case is
subsumed under the two-category case, we only discuss the two-cate-
gory case henceforth.

The intrusive force causes the Pusher to move toward the Pushee,
initiating the interaction. On its own, the intrusive force will not trigger
the Pushee to move. The spreading force helps to address this issue by
spreading each category outward, causing the outer edge of the Pushee
to move away. However, this still will not allow the Pushee as a whole
to move; instead, the distance between categories will decrease and
their overlap will grow. The repulsive force solves these problems by
pushing the categories away from one another, allowing both categories
to move while remaining the same distance apart. But the repulsive
force will also increase category skewness, since it acts more on the part
of each category in the overlapping region than on the other part. The
squeezing force counters this increase in skewness by squeezing each

Fig. 1. Centroids (points) and distributions (densities) for the F1 values of the
BAT (/æ/; red) and BET (/ɛ/; blue) vowel categories for speakers of New Zealand
English born each decade from 1900 to 1959 (top to bottom), based on the raw
data from Hay et al. (2015). While the category centroids move over time, their
distance from one another stays approximately constant. The shapes (width and
skewness) of the category distributions also stay approximately constant over
time, as does the substantial degree of overlap between the two distributions.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 2. Forces that minimally must act on phoneme category distributions in
order to meet model desiderata. (A) An intrusive force pushes the Pusher to-
ward the Pushee. (B) A spreading force allows the far side of the Pushee (blue)
to retreat. (C) A repulsive force pushes the two categories apart, with greatest
strength in the area of overlap between the categories, allowing the near side of
the Pushee to retreat. In the case of single-category movement, there is only one
category, and (C) does not apply. (D) A squeezing force ensures that the cate-
gories do not become too wide or skewed. We propose that word frequency-
based asymmetries in regular sound change can be generated by allowing the
repulsive force, which we relate to robustness of spoken word recognition, to
vary with frequency. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

6 We base our requirements on the New Zealand short front vowel shift be-
cause we have much more data from that sound change than from the others
discussed here (approximately 40 times more tokens), and because it is based in
a continuous acoustic space. While we acknowledge that different properties
may hold for different kinds of sound change, the use of a single set of em-
pirically-supported properties for present purposes is parsimonious.
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category inward, with the long tail (the tail outside of the overlapping
region) being squeezed more than the short tail (the tail in the over-
lapping region).7 The squeezing force also acts with the repulsive force
to ensure that the categories do not become too wide under the
spreading force.

The repulsive force pushes overlapping categories away from each
other, enforcing an aversion to acoustic ambiguity. Our main proposal
in this paper will rest on the notion that high-frequency words ex-
perience this aversion less than low-frequency words, as they can be
more robustly recognized in the face of acoustic ambiguity than low-
frequency words (see Section 5.3). In other words, high-frequency
words are less sensitive to the repulsive force than low-frequency
words. In Section 5.5, we test whether incorporating such an asym-
metry in a two-category model that generates and successfully balances
the four forces in Fig. 2 causes high-frequency words to change faster
than low-frequency words in the Pusher and vice versa in the Pushee.

2.5. Model implementation: Exemplar Theory

We implement the high-level forces discussed above using re-
presentations based on Exemplar Theory, which proposes that cate-
gorization of a perceived stimulus entails the comparison with ex-
emplars – episodic traces of experienced instances – of other stimuli,
stored in memory (e.g. Nosofsky, 1986). For speech perception, this is
taken to mean that listeners store richly-detailed memories of spoken
words as they experience them, which they use as a basis of comparison
for categorizing other instances of spoken words (Goldinger, 1996;
Johnson, 1997). Pierrehumbert (2001, 2002) proposed that speech
production could also be exemplar-based, with the production of a
spoken word drawing on the same exemplars that would be used in the
perception of it. The joining of production and perception in this way
creates a closed loop, within which the processes acting on individual
exemplars aggregate to yield forces acting across entire distributions of
words containing the same phonological segment. The modeling of
these forces as emergent over atomic exemplars in the distribution
provides a convenient way to capture word-specific patterns of sound
change whilst also capturing larger patterns that recur across words
(Pierrehumbert, 2002). Exemplar-based models of the perception-pro-
duction loop have been applied to various kinds of sound change
(Ettlinger, 2007; Harrington et al., 2018; Pierrehumbert, 2001, 2002;
Sóskuthy, 2013; Tupper, 2015; Wedel, 2004, 2006, 2012; Wedel &
Fatkullin, 2017).

A common criticism of exemplar-based models is that they privilege
high-frequency words, because their higher rate of occurrence leads
them to be represented more densely in memory. By consequence, ex-
emplar-based models are often interpreted to predict that high-fre-
quency words should change fastest in every regular sound change,
which draws criticism for predicting frequency effects where there
aren’t any (Abramowicz, 2007; Bermúdez-Otero et al., 2015; Dinkin,
2008; Tamminga, 2014). In showing that our model generates different
effects of word frequency in different kinds of sound change, we aim to
dispel the misunderstandings underlying this criticism and point out the
value that exemplar-based computational modeling can bring to the
study of sound change.

3. Model description

Our model is formulated as a production-perception loop
(Pierrehumbert, 2001) and consists of a cycle of processes applying to
exemplars (one per iteration). In this section, we describe at a high level
the representations in the model, the processes constituting production

and perception, and the way in which these processes yield the forces
that drive the evolution of the system.

3.1. Representations in the model

The model describes how the realization of a phoneme occurring
within words changes over time as those words are used in successful
communication. For concrete illustration, we assume that the phoneme
in question is a vowel, and the words in question are monosyllabic. The
model contains three levels of representation in memory: category, type,
and exemplar. The number of exemplars of a particular type reflects the
type frequency, and the exemplars are arranged within a perceptual-
acoustic exemplar space. We include a glossary of representation terms
in Table 1, along with measures of the representations in simulations,
for ease of reference.

3.1.1. Categories
A category corresponds to a phoneme, representing an abstract

generalization over experienced instances of that phoneme (in words).
For example, the category representation of the phoneme /æ/ is a
generalization over experiences with words like map, lab, cat, etc. Our
simulations involve one or two categories; in the two-category case, a
Pusher category moves toward a Pushee category. For discussion of
systems with more than two categories, see Appendix A.1.

3.1.2. Types
A category consists of a set of types, which represent abstract tem-

plates for words containing the corresponding phoneme. There are two
components to a type: the phonological frame, which specifies the parts
of the word that are not at issue, and the category to which the type
belongs, which specifies the phoneme that is at issue. For example, the
type corresponding to the word map has the phonological frame /m_p/
and belongs to the category /æ/. For simplicity, we assume that there
are no minimal pairs, so that the category membership of a given type
may be uniquely determined from its phonological frame (see Appendix
A.2 for discussion).

Our simulations include 92 types per category, approximately one-
tenth of the number in the New Zealand vowel shift data8; see Section
S1.1 of the Supplementary Materials for details.

3.1.3. Exemplars
Each type is substantiated by exemplars, which are detailed memory

traces of instances of that type. Exemplars encode experienced per-
ceptual-acoustic realizations of the category phoneme. For example, the
representation for the word map includes a number of remembered
instances of spoken “map”, each one containing a slightly different
realization of the vowel /æ/. Our simulations include 492 exemplars
per category (see Section S1.1 of the Supplementary Materials for de-
tails).

3.1.4. Frequency
Different types have different numbers of exemplars; we follow the

multiple-trace hypothesis (Hintzman & Block, 1971) in assuming that
the number of exemplars for a given type represents that type’s fre-
quency. For the simulations presented in this paper, we modeled the
number of exemplars corresponding to a word on the log-frequency of
that word in a large corpus, yielding frequencies ranging from 1 to 12
(see Section S1.1 of the Supplementary Materials). We use the same
type frequencies for perception and production (see Appendix A.3 for
discussion).

7 In our model, the squeezing force squeezes toward the mode. In the Section
S1.2.8 of the Supplementary Materials, we discuss why this is preferable to the
approach taken by previous models, where it squeezes toward the mean.

8 Increasing the number of types does not change the qualitative results of the
model, but slows down its evolution by an approximately proportionate
amount; see Sections S3.2 and S5.2.3 of the Supplementary Materials for il-
lustrative simulation and mathematical discussion, respectively.
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3.1.5. Exemplar space
The model tracks the distribution of exemplars in a perceptual-

acoustic exemplar space. Following Kruschke (1992), the exemplar space
is granularized, such that acoustic values that are different but never-
theless perceived identically are all represented by a single, shared
value (see Pierrehumbert, 2001). For this early work, we make the
simplifying assumption that the exemplar space is one-dimensional, e.g.
corresponding to vowel F1; for discussion, see Appendix A.1.

We assume a single exemplar space, shared across production and
perception. This can be interpreted as a single agent talking to herself,
or as an aggregate over a homogeneous community talking amongst
itself. The modeling of multiple agents with distinct spaces is left for
future work.

The model is initialized with a distribution of exemplars for each
category, constructed in such a way as to avoid asymmetries across
categories, across frequency classes, or across exemplars within a fre-
quency class (see Section S1.1 of the Supplementary Materials). The
initial width of the categories, , and the initial distance between them,
µ, are parameters of the model.

3.2. Processes in the model

Each iteration of the model begins with the production of a token – an
instance of a type with a particular target acoustic value – based on the
existing exemplar space. The produced token is then transmitted to the
listener, as the acoustic value of an unknown phoneme residing in a
known phonological frame.9 In perception, the listener uses the value and
frame to recover the type (and thus the category) intended by the speaker,
and then decides whether the token should be stored as an exemplar of
that type and thus update the corresponding category distribution.

Together, production and perception form a closed loop, gradually
updating the distribution of exemplars in the space through the gen-
eration and storage of tokens. This loop is composed of multiple pro-
cesses, both on the production side and the perception side, as illu-
strated in Fig. 3. It is these processes that yield the category-level forces,
as illustrated in Fig. 4.

We describe the processes in the model in the following subsections.
For technical details, see Section S1.2 of the Supplementary Materials.

3.2.1. Type and target selection
The speaker first selects a type (weighted by frequency), and then

selects an exemplar of that type to constitute the initial production
target. Both selections are random and independent of previous selec-
tions, together constituting a random draw from the set of exemplars.

Prior to realization, the target value is adjusted under two influ-
ences, bias and imprecision.

3.2.2. Bias
The first adjustment of the target value is due to bias, which shifts

the target by a small and consistent amount. Bias represents external

influences such as reduction of articulatory effort. At the level of the
category distribution, it yields the intrusive force (henceforth, the bias
force).

We apply bias to all10 productions in the single-category case, and to
all productions of the Pusher category in the two-category case. The size
of the bias, , is a parameter of the model.

3.2.3. Imprecision
The second adjustment of the target value is due to imprecision,

which shifts the target by a small (random) amount in either direction.
Imprecision represents natural variability in the application of motor
routines in realization.11 At the level of the category distribution, it
yields the spreading force (henceforth, the imprecision force).

We implement imprecision through the addition of random noise to
the target, for all productions. The degree of imprecision, , is a para-
meter of the model.

3.2.4. Activation
For the listener, the incoming token activates exemplars of both

categories within a window around the target, with exemplars near the
target activated more than those far away. These activations are ag-
gregated within each category to yield overall category activation,
which underlies key processes in perception. The size of the activation
window, , is a parameter of the model.

3.2.5. Identification
Based on the phonological frame, the listener identifies the type12

corresponding to the token. Not every identified token is stored as an
exemplar, updating the category representation; for that, the token
must be “good” enough, i.e. must pass the discriminability and typi-
cality evaluations.

Table 1
Glossary of representation terms.

Term Meaning Example Simulations

Category A generalization over experienced instances of a phoneme (e.g. a vowel), stored in memory /æ/ 1–2 categories
Type An abstract template for a word containing a particular phoneme, collecting together experienced instances of that word in memory.

Contains information about the frame (e.g. onset and coda consonants of a monosyllabic word) and the category (e.g. nucleus vowel)
map 92/category

Exemplar A memory trace of an experienced instance of a particular type, i.e. a spoken word “map” 492/category
Type frequency The number of exemplars of a given type. Based on word log-frequency in a large corpus (see Section S1.1 of the Supplementary

Materials)
Range: 1–12

Exemplar space The distribution of exemplars across a granularized perceptual-acoustic dimension (e.g. vowel F1). Assumed to be shared across
perception and production

Grain: 0.1

9 For simplicity, we assume that both the acoustic value and the phonological
frame of the token are perceived exactly as produced.

10 A reviewer asks whether applying bias selectively to a subset of types
would generate category movement. We believe so, provided that the subset of
biased types is sufficiently large and the bias force sufficiently small (relative to
the typicality force, which promotes category cohesiveness). When these con-
ditions are not met – such as in phonologically-conditioned changes or isolated
socially-meaningful realizations – we expect the category to split. The in-
vestigation of such cases is beyond the scope of the present paper and is left for
future work.
11 In principle, imprecision may be experienced by the speaker or by the

listener. The number of imprecision processes does not affect the high-level
model behavior, so we choose a single process for simplicity. We choose to
locate this process in the speaker, to make it clear that our claim of the listener’s
centrality to sound change is based on processes that have strong justification
for being listener-based.
12 In the present model, there is just one candidate type for the token – which

is the type intended by the speaker – because phonological frames are perfectly
transmitted and there are no minimal pairs. In principle, however, a set of types
may be plausible candidates, and each may be assessed (in subsequent eva-
luations) for the extent to which it is compatible with the transmitted token
(Norris & McQueen, 2008). We discuss the introduction of architecture to
handle multiple candidate types in Section S3.4.1 of the Supplementary
Materials.
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3.2.6. Discriminability evaluation
The discriminability evaluation poses the question: how likely is the

token to be a realization of its identified category, as opposed to the
other category, based on its acoustic value? It follows results in speech
perception that tokens that are acoustically ambiguous between cate-
gories incur processing costs, causing errors and delays in recognition
(e.g. Connine, Blasko, & Hall, 1991; see also Section 5.3 for interactions
with word frequency). Tokens that do not pass the evaluation are not
stored, and hence do not update the category distribution.

The discriminability evaluation is probabilistic, based on the ratio of
category activations (identified/other). Hence, tokens outside of the
region of category overlap (where the ratio is large) are more likely to
pass than tokens inside it (where the ratio is small). At the level of the

category distribution, this asymmetry yields the repulsive force (hen-
ceforth, the discriminability force).

The evaluation proceeds by comparing the category activation ratio
to a discriminability threshold, , which is a parameter of the model.
The size of determines the size of the discriminability force: as
grows higher, passing the evaluation becomes harder, and the force
grows stronger.13

Fig. 3. Schematic illustration of processes in the model, forming a closed loop between production and perception. Outline colors represent phoneme category
membership (e.g. /æ/), shapes represent phonological frame (e.g. /m_p/) – so that colored shape-outlines represent types (e.g. “map”) – and fill colors and horizontal
positions represent perceptual-acoustic value (e.g. vowel F1). Dark green components with Greek letters indicate parameters of the model. (A) Two partially-
overlapping categories exist in an exemplar space. The initial category width, , and distance between categories, µ, are parameters. (B) The speaker randomly selects
a type for production, according to its frequency. (C) An exemplar of that type is randomly selected to provide an acoustic target for the production. (D) For the
Pusher, the target is shifted by a constant bias toward the Pushee. The size of the bias, , is a parameter. (E) The actual realization of the target is imprecise, causing it
to shift by a random amount in either direction. The degree of imprecision, , is a parameter. (F) The realized token is transmitted to the listener, with its acoustic
value and phonological frame but without its category membership. (G) The listener locates the token in their exemplar space, activating surrounding exemplars of
both categories within a fixed activation window. The size of the activation window, , is a parameter. (H) The candidate type of the token is identified based on
context (represented here by phonological frame), yielding identification of the intended category. (I) The activation of the intended category (red) is compared to
the activation of the other category (blue); if the ratio of activations is below a fixed discriminability threshold, the token is unlikely to be stored. The discriminability
threshold, , is a parameter. (J) The activation of the intended category is compared to a typicality threshold; if the activation is below the threshold, the token is
unlikely to be stored. The typicality threshold, , is a parameter. (K) If the token is sufficiently discriminable and typical, it is stored in the listener’s exemplar space,
replacing a random exemplar of the same type. In our model, the speaker and listener are the same, and thus storage updates the exemplar space for future production
and perception. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

13 The net discriminability force also grows with the size of the activation
window, , as a wider window encapsulates more exemplars and yields a ca-
tegory activation ratio closer to 1, which is lower for most tokens.
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3.2.7. Typicality evaluation
The typicality evaluation poses the question: how good is the token

as a realization of its identified category, in absolute terms? It follows
results in speech perception that tokens that are “good” instances of
their category – i.e. that are similar to many other experienced in-
stances of the category – are encoded strongly in memory (e.g. Clopper,
Tamati, & Pierrehumbert, 2016), giving them advantages in immediate
processing (e.g. Johnson, 2006) and long-term recall (e.g. Sumner, Kim,
King, & McGowan, 2014). Tokens that are poor instances of their ca-
tegory, i.e. that do not pass the evaluation, are not stored.

The typicality evaluation is probabilistic, based on the activation of
the identified category. Hence, tokens that are near the mode of the
category (where activation is high) are more likely to pass than tokens
that are far from it (where activation is low). At the level of the category
distribution, this asymmetry yields the squeezing force (henceforth, the
typicality force).

The evaluation proceeds by comparing (normalized) category acti-
vation to a typicality threshold, , which is a parameter of the model.
The size of determines the size of the typicality force: as grows
higher, passing the evaluation becomes harder, and the force grows
stronger.14

3.2.8. Storage
The token updates existing category representations by being stored

as an exemplar of the identified category, but only if it passes both the
discriminability and typicality evaluations. It follows that “poor” (in-
discriminable and/or atypical) productions have much less influence on
representations – and thus are much less likely to be repeated – than
“good” productions.

When a token is stored, it overwrites a random exemplar of the same
type (see e.g. Landauer, 1986, for discussion of overwriting as a prin-
ciple of memory). While this approach is a clear simplification, it yields
few differences from alternatives; for discussion, see Appendix A.4.

3.3. Comparison to existing models

At a high level, most of the representations and processes in our
model are common to previously-proposed exemplar dynamics models
(Ettlinger, 2007; Pierrehumbert, 2001, 2002; Sóskuthy, 2013; Tupper,
2015; Wedel, 2004, 2006, 2012; Wedel & Fatkullin, 2017), though
some low-level details of implementation differ (for fine-grained com-
parison, see Section S1.2 of the Supplementary Materials). There are
two components of our model that stand out from this commonality.

Firstly, our model includes both category- and type-level

representations, enabling us to treat word frequency separately from
phoneme frequency. With a single exception (Sóskuthy, 2014), previous
models have (explicitly or implicitly) treated types as categories and
thus confounded two potential sources of frequency effects. This lack of
distinction contributed to the claim by Pierrehumbert (2001) that high-
frequency words change fastest under production bias in regular sound
change; for discussion, see Section S5.2.5 of the Supplementary
Materials.

Secondly, our model generates the squeezing force with the novel
process of typicality evaluation, rather than the standard process of
entrenchment15. Our process better facilitates the maintenance of ca-
tegory overlap and shape (see Section S1.2.8 of the Supplementary
Materials), which previous models have struggled with; for example,
the model presented by Tupper (2015) generates skewed, barely-over-
lapping categories, and Pierrehumbert (2002, p. 133) states that she
“[has] not actually been able to find a parameter range for this model
which shows stable overlapping distributions”.

4. Modeling single category movement

We begin by modeling the most basic case: movement of a single
category. Recall from Section 2.3 that the basic desiderata for such a
model are that it: (i) generates movement of the category; and (ii)
maintains the shape (width & skewness) of the category. In this section,
we describe our approach to meeting these desiderata, and we show
that the model captures the key frequency-related property of Man-
chester /t/-glottaling – change at the same rate across words of all
frequencies.

4.1. Approach

As established in Section 3, the overall evolution of a system in-
volving a single biased category is defined by three forces stemming
from production and perception processes, whose strengths are de-
termined by the value of key model parameters ( , , , and ). The task
of meeting the desiderata for a model of single category movement
therefore reduces to the task of finding parameter values that balance
these forces against one another, generating consistent non-distorting
category movement. To accomplish this task, we tuned sets of para-
meters in a stepwise process; for detailed discussion, see Sections
S2.1–2.2 of the Supplementary Materials.

4.2. Results and discussion

The tuning process identified numerous parameter values yielding
behavior that met our desiderata. Taking the fact that the model gen-
erates appropriate single category movement as sufficient foundation,
we now turn to our primary interest: the effect of word frequency on
rate of change. We hypothesized that placing emphasis on the listener
would predict no effect, since the movement has no adverse implica-
tions for the listener (i.e. yields no changes in the discriminability of
tokens).

Fig. 5 shows how both low- and high-frequency types move over
time, averaged across 1000 simulations, for representative parameter
settings under different degrees of bias. The centroids of the low- and
high-frequency sub-distributions change in parallel (i.e. at the same
rate), supporting our hypothesis that sound change without adverse
implications for the listener is frequency-independent. We take this
result to mean that a listener-based focus can explain the lack of word

Fig. 4. Iterated over time, processes in the model exert forces on the distribu-
tions of exemplars within each category. (A) Bias pushes one category toward
the other. This force increases with . (B) Imprecision spreads each category
outward. This force increases with . (C) Discriminability pushes exemplars out
of the region of overlap between categories, repelling categories away from one
another. This force increases with and . (D) Typicality lightens the tails of
distributions, squeezing each category toward its mode and countering skew-
ness. This force increases with and decreases with .

14 The typicality force also grows as the size of the activation window, ,
shrinks. A narrower window encapsulates fewer exemplars and yields lower
category activation.

15 Entrenchment is a form of averaging, such as might occur due to practice
effects in production (Pierrehumbert, 2001), and generates the squeezing force
in most exemplar dynamics models. We exclude entrenchment for present
purposes, but have included it in the accompanying code; see Section S4 of the
Supplementary Materials for discussion.
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frequency effect on rates16 of /t/-glottaling in Manchester English
(Bermúdez-Otero et al., 2015).

Our result is critically different to that predicted by prominent
usage-based models and theories (Bybee, 2002; Phillips, 1984;
Pierrehumbert, 2001), in which the higher rate of production of high-
frequency words translates into a higher rate of response to bias. The
primary reason for this difference is that we model both the type (word)
level and the category (phoneme) level, allowing types of different
frequencies to be represented by different numbers of exemplars. Even
though high-frequency types are produced (with bias) more often than
low-frequency types, they are also represented by more exemplars
(Hintzman & Block, 1971). Thus, an isolated production has less in-
fluence on the representation of a high-frequency type than on that of a
low-frequency type, counterbalancing the difference in rates of pro-
duction (see also Sóskuthy, 2014).17 We illustrate the differences be-
tween previous usage-based models and our model schematically in
Fig. 6; for discussion from a mathematical point of view, see Section
S5.2 of the Supplementary Materials.

5. Modeling two-category interaction

We now turn to the modeling of two-category interaction. Recall
from Section 2.3 that the basic desiderata for such a model are that it:
(i) generates movement of one category in response to the other; (ii)
maintains the distance between the two categories; (iii) maintains the
shape (width and skewness) of the categories; and (iv) maintains the
overlap of the categories. To our knowledge, no other exemplar-based
model reported in the literature has met all of these desiderata, due
primarily to difficulties with maintaining overlap of non-skewed cate-
gories.

In this section, we show that our model can meet the desiderata. We
argue that perceptual processes are central to this success, underscoring
the importance of the listener to sound change. We then show that
enriching the basic model with an empirically-grounded perceptual
asymmetry allows for the generation of word frequency effects on rate
of change that resemble those seen in New Zealand English /t/-tapping
(Hay & Foulkes, 2016) and /ɛ/-raising (Hay et al., 2015).

5.1. Basic model: approach

The general approach for modeling two-category interactions is si-
milar to that used for modeling single-category movement (Section
4.1). The task is to find values of key model parameters ( , , , , and
) that balance the forces acting on the two category distributions. As in
the single-category case, we accomplished this task by tuning sets of
parameters in a stepwise process, ignoring potential frequency effects;
for detailed discussion, see Sections S2.3–2.4 of the Supplementary
Materials.

5.2. Basic model: results and discussion

The tuning process identified numerous parameter values that
yielded interlinked category movement with maintenance of category
width, shape, distance, and overlap; to our knowledge, a first in the
exemplar dynamics literature. An example is illustrated in Fig. 7.

We attribute the success of our model in meeting the desiderata to
three aspects of the perceptual processes undertaken by the listener.
Firstly, by using a discriminability threshold < 1, our model induces a
lexical bias (Ganong, 1980) in cases of low discriminability, effectively
shrinking the part of the overlapping region between categories that
creates instability for the perception of attested (real-word) types.
Secondly, by not storing tokens that fail the discriminability evaluation
(i.e. tokens that are likely to be recognized as nonwords), our model

Fig. 5. Results of simulations with a single category ( = 0.8) subject to varying
degrees of bias, illustrating differences between low-frequency (solid) and high-
frequency (dashed) types. For all degrees of bias, the centroid of the category
distribution advances at the same rate for both low- and high-frequency types. Fig. 6. Schematic illustration of the intuition underlying the interaction of type

frequency and bias in prominent usage-based models (A; e.g. Pierrehumbert,
2001) and the present model (B). Different types are represented by different
shapes and colors, acoustic value is represented by vertical position, and
movement due to bias is represented by red arrows (one per production of the
type). Each case depicts a high-frequency type (black circles; frequency 4) and
some low-frequency types (colored angled shapes; frequency 1). In (A), shapes
represent the location of the mean acoustic value for each type, and type fre-
quency is indicated by numbers; in (B), the exemplar distribution of each type is
represented by individual exemplars, and type frequency is indicated by
number of exemplars. The left panel shows an initial condition, and the right
panel shows the expected (average) result after the amount of time it takes to
produce the high-frequency type 4 times. (A) Intuition underlying prominent
models; comparing a single type of each frequency. In the expected amount of
time it takes to produce the high-frequency type 4 times (5 iterations), the low-
frequency type is expected to be produced once. Each production of a type adds
bias and updates that type’s mean. Since the high-frequency type is produced 4
times more often than the low-frequency type, it is subjected to 4 times as much
bias. The high-frequency type thus evolves at a faster rate than the low-fre-
quency type. (B) Present model; comparing the aggregate over exemplars of
each frequency. In the expected amount of time it takes to produce the high-
frequency type 4 times (8 iterations), the four low-frequency types are each
expected to be produced once. Each production of a type adds bias to a single
exemplar of that type. Since each exemplar of each type is produced once, the
bias is distributed over the exemplars. While the high-frequency type is sub-
jected to more bias than any low-frequency type, it distributes this bias over 4
exemplars, which is equivalent to the distribution of bias over 4 exemplars of
the 4 different low-frequency types in aggregate. The sub-distributions of high-
and low-frequency exemplars thus evolve at the same rate. (For interpretation
of the references to color in this figure legend, the reader is referred to the web
version of this article.)

16 We emphasize that our focus is on the lack of word frequency effects on rate
of change, and not on the existence of a stable frequency effect whereby high-
frequency words exhibit a fixed amount more /t/-glottaling than low-frequency
words at every point in time. To account for this stable effect, the model would
have to assume that high-frequency words are more prone to hypoarticulation
than low-frequency words (e.g. Bell, Brenier, Gregory, Girand, & Jurafsky,
2009; Gahl, 2008) and that the initial conditions reflect this asymmetry (rather
than being neutral, as at present). The same assumptions are required in the
explanation put forward by Bermúdez-Otero et al. (2015).
17 While the centroids of the sub-distributions of exemplars of high- and low-

frequency types changed at the same rate in our simulations, the sub-dis-
tributions themselves did not evolve identically, due to a side-effect of our
assumptions about production and storage. For details and discussion, see
Appendix B.
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avoids skewness-inducing overpopulation of the overlapping region
between categories (see e.g. results of “competition with discards” in
Tupper, 2015). Thirdly, by including the novel process of typicality
evaluation, our model generates a squeezing force that keeps skewness
in check while facilitating overlap (see Section S1.2.8 of the
Supplementary Materials for comparison to the standard alternative).
The importance of these perceptual processes supports our claim that
the listener plays a central role in sound change.

Further support for the centrality of the listener is provided by the
fact that, without the listener, categories would not interact at all in our
model: the Pusher would simply float over the Pushee, because the
speaker samples production targets without concern for potential am-
biguity. The listener prevents this behavior by providing an indirect,

non-teleological influence of perceptual filtering on production:
whenever the speaker is ambiguous, the listener is unlikely to store the
token, and is thus unlikely to use it as a basis for future productions.
The listener thus drives category interaction in our model by creating
category repulsion via the discriminability force, with the speaker’s
constant bias serving to ensure that interaction persists in the face of
this repulsion.18 More generally, the listener drives any self-organiza-
tional response to the system as a whole, as perceptual processes in-
volve the activation of multiple exemplars (from both categories),
whereas production processes involve no more than the single initial
target exemplar.

In the absence of additional mechanisms, the basic model generates
frequency effects on rate of change that are the reverse of those seen
empirically: high-frequency types change slower than low-frequency
types in the Pusher and faster in the Pushee (Fig. 8). These strength of
these effects is due to our assumptions about production and storage;
see Appendix B for discussion.

5.3. Enhanced model: motivation

To successfully model the frequency effects from New Zealand
English /t/-tapping (Hay & Foulkes, 2016) and /ɛ/-raising (Hay et al.,
2015) respectively, high-frequency types would have to change faster
than low-frequency types in the Pusher and slower than low-frequency
types in the Pushee. The basic model generated the reverse effects. We
argue that the basic model failed because it does not incorporate em-
pirically supported frequency-based asymmetries in perception.

The literature contains numerous empirical results showing that
high-frequency words are privileged over low-frequency words in
speech perception, both when there is no salient lexical competitor, and
when there is. In situations without a salient lexical competitor, relative
to low-frequency words, high-frequency words are intelligible in larger
amounts of masking noise (Howes, 1957) and are classified as real
words more often (Luce & Pisoni, 1998) and faster (Forster & Chambers,
1973) in lexical decision. In situations where multiple salient words
compete for recognition, higher-frequency words attract more attention
early in processing (Dahan, Magnuson, & Tanenhaus, 2001) and are
favored responses to degraded stimuli (Savin, 1963) or stimuli from a
dialect other than one’s own (Clopper, Pierrehumbert, & Tamati, 2010).

Furthermore, a series of phonetic categorization studies have shown
word frequency effects in the mapping of an acoustically ambiguous
stimulus to one of two words in a minimal pair. Fox (1984) observed
that, when presented with ambiguous stimuli on a “bad”-“dad” con-
tinuum, listeners were more biased toward bad responses than expected
(based on their responses to a /bæ/-/dæ/ continuum). He suggested this
might be because bad is more frequent than dad. Connine et al. (1993)
provided support for this suggestion from a range of continua between
high- and low-frequency words that differ in initial stop voicing (e.g.
“best”-“pest”). Ambiguous stimuli on these continua were more likely
to trigger the high-frequency word response (e.g. best) than the low-
frequency word response (e.g. pest). Similar results were found by
VanDam (2007). Finally, de Marneffe, Tomlinson, Tice, and Sumner
(2011) replicated this result using manipulated French-accented Eng-
lish words with final stops (e.g. “tag” and “tack”), showing that the
high-frequency response bias is not limited to situations where the
stimulus begins with an ambiguous sound. Furthermore, they showed

Fig. 7. The evolution of exemplar distributions (rugs on horizontal axis) and
corresponding activation fields for one run of the model (parameter set (2) from
Table S3 of the Supplementary Materials). Over time (from top panel to
bottom), the two categories move to the right, maintaining their distance from
one another, their degree of overlap, and their widths and skewnesses.

18 A reviewer asks what would happen in a system without bias. Without bias,
mutual category repulsion stemming from the discriminability force would
cause category separation (see Section S3.3.2 of the Supplementary Materials).
With limits on the space of possible articulations, the system would eventually
stabilize to maximally distribute the categories, as in Dispersion Theory
(Liljencrants & Lindblom, 1972). Thus, removing bias limits category interac-
tion to a “default” basis, removing the possibility for the sustained and targeted
movement that we model here.
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that the bias is not limited to minimal pairs with extreme frequency
differences, but is found across minimal pairs, with strength related to
the ratio of word frequencies.

We take this set of results to imply that – all else being equal, i.e.
absent effects of speech style or semantic context – the perceptual
system is biased toward the recognition of high-frequency words,
especially in the case of acoustically ambiguous tokens. In the following
sections, we show that enriching the basic model to encode such a bias
allows it to generate the frequency effects on rate of change seen em-
pirically in /t/-tapping and /ɛ/-raising in New Zealand English.

5.4. Enhanced model: approach

We assume that acoustically ambiguous tokens of high-frequency
words are more robustly recognized and stored than similarly-ambig-
uous tokens of low-frequency words (see also Hay et al., 2015, for more
discussion). We encode this perceptual asymmetry in our model by
varying the discriminability threshold, , with type frequency.19 Spe-
cifically, we give tokens of high-frequency types lower than tokens of
low-frequency types, making them more discriminable, i.e. more likely
to pass the discriminability evaluation and be stored when encountered
in the overlapping region between categories. This assumption has no
implications for the case of single-category movement (Section 4), as
the discriminability evaluation cannot fail in a system containing only
one category.

To test the hypothesis that frequency-based asymmetries in dis-
criminability could give rise to empirically observed frequency effects
on rate of change, we conducted simulations with frequency-sensitive ,
keeping all other parameters fixed at the previously-tuned values from
Section 5.1. We constructed 15 frequency-sensitive functions, which
are illustrated in Fig. 9A and described fully in Section S1.3 of the
Supplementary Materials.

5.5. Enhanced model: results and discussion

The results of varying with type frequency are shown in Fig. 9B.
When average discriminability is sufficiently high and high-frequency
types are sufficiently more discriminable than low-frequency types, the
model generates robust frequency effects resembling those seen

empirically. In Section S3.1 of the Supplementary Materials, we show
how these effects can be reinforced by further empirically-supported
asymmetries in the typicality evaluation. The general result is that,
given appropriate frequency-based perceptual asymmetries, high-fre-
quency types change faster than low-frequency types in the Pusher and
slower than low-frequency types in the Pushee.

The result obtains because, though each category distribution as a
whole is subjected to a given discriminability force, types of different
frequencies are differentially sensitive to it. High-frequency types are
less sensitive to the discriminability force and low-frequency types are
more sensitive to it. To balance category-level forces, the sub-dis-
tribution of high-frequency exemplars is shifted closer to the over-
lapping region, where the local discriminability force is larger, and vice
versa for the sub-distribution of low-frequency exemplars.20 The size of
the frequency effect on rate of change is thus a function both of the
average discriminability, which determines the size of the discrimin-
ability force on average, and of the degree of frequency-based dis-
criminability asymmetry, which determines the difference in sensitivity
to the discriminability force.

As in Section 5.2, we emphasize that the results here are driven by
the listener, not the speaker.21 In our model, high-frequency types and
low-frequency types all show the same sensitivity to speaker-based
forces (bias and imprecision), and there is no impetus for the speaker to
produce tokens of high-frequency types in a hypoarticulated manner or
tokens of low-frequency types in a hyperarticulated manner (cf.
Lindblom, 1990). Rather, tokens of high-frequency types are more ro-
bustly recognized than tokens of low-frequency types, leading them to
be more likely to be stored when they are in the overlapping region
between categories. Consequently, the high-frequency sub-distribution
will come to be dominated less by “clear” exemplars (from outside of
the overlapping region) than the low-frequency sub-distribution, and
the asymmetry in perception will drive asymmetries in production
without the speaker ever having an intention to adjust the clarity of her
productions.

6. General discussion

We set out to explore whether patterns of regular sound change
could be driven by processes within the listener, rather than by pro-
cesses within the speaker. In particular, we asked whether an emphasis
on the listener could explain why high-frequency words change at the
same rate as low-frequency words in some kinds of regular sound
change, faster than low-frequency words in other kinds of regular sound
change, and slower than low-frequency words in yet other kinds of
change. To address this question, we constructed an exemplar-based
computational model of single-category movement and two-category
interactions with empirically-motivated high-level properties, into
which we incorporated a bias for high-frequency words to be more
robustly recognized than low-frequency words in the face of acoustic
ambiguity. We showed that, with such a bias in the listener, the model
successfully explained the different effects of word frequency on rate of
change in /t/-glottaling in Manchester English (Bermúdez-Otero et al.,
2015), /t/-tapping in New Zealand English (Hay & Foulkes, 2016), and
/ɛ/-raising in New Zealand English (Hay et al., 2015).

In this section, we discuss the model’s predictions for word

Fig. 8. Representative results of simulations in the basic model with two ca-
tegories for different discriminability thresholds (parameter sets (4), (10), and
(16) from Table S3 of the Supplementary Materials), illustrating the extent to
which high-frequency types are ahead of low-frequency types in the Pusher
(red) or Pushee (blue). A positive slope represents a faster rate of change of
high-frequency types compared to low-frequency types. For all discriminability
thresholds, high-frequency types change slower than low-frequency types in the
Pusher and faster than low-frequency types in the Pushee – the reverse of the
frequency effects observed empirically. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

19 The high-level assumption that varies with type frequency is sufficient to
show that asymmetries in discriminability yield asymmetries in rates of change.
Ultimately, however, we would like these asymmetries to emerge mechan-
istically from the exemplar-based architecture (i.e. with a fixed for all types).
In Section S1.3.1 of the Supplementary Materials, we discuss two mechanisms
by which such asymmetries could emerge.

20 A reviewer asks if this separation of exemplar sub-distributions could lead
to a category split. The answer is no, because all exemplars within a category
are subjected to the same typicality force, which squeezes them toward a single
mode. We also emphasize that the model treats frequency as a continuous
variable, so that a category is made up of sub-distributions spanning the entire
frequency range, not just the two extremes that we use for illustration.
21 We provide further evidence that frequency effects on rate of change are

driven by the listener, not the speaker, with additional simulations in Section
S3.3 of the Supplementary Materials. We observe the same frequency effects
both in the absence of category movement and in the absence of speaker bias.
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frequency effects more generally and compare them to the predictions
of other models (Section 6.1). We then highlight the importance of
computational modeling in underpinning predictions about sound
change and illustrate how further modeling assumptions can generate

further testable predictions (Section 6.2). Finally, we discuss the im-
plications of our model for the role of the listener in sound change
(Section 6.3).

Fig. 9. Details and results of treating discriminability threshold ( ) as a function of type frequency. (A) functions investigated (black lines). Lower indicates
greater discriminability. Across all panels in a given row, is kept constant for median-frequency types (dashed green lines). This median-frequency decreases
moving up the rows, making discriminability higher on average. Across all panels in a given column, the difference between for high-frequency types and for low-
frequency types (slope) is kept constant. This difference increases (slope steepens) moving rightward across the columns, making high-frequency types increasingly
more discriminable than low-frequency types. (B) Results of varying discriminability threshold ( ) with type frequency for representative sets of parameter values
(sets (4), (10), and (16) from Table S3 of the Supplementary Materials; all other sets give similar results). The vertical axis shows the extent to which high-frequency
types are ahead of low-frequency types in the Pusher (red) or Pushee (blue), averaged over 1000 runs for each parameter setting. A positive slope represents a faster
rate of change of high-frequency types compared to low-frequency types. All curves end with a horizontal section corresponding to a stable equilibrium. As in (A),
panels are laid out according to function. Moving rightward across the columns, high-frequency types become increasingly more discriminable than low-frequency
types. This shifts the end of the curve upward for the Pusher (red), causing positive-sloping sections where high-frequency types change at a faster rate than low-
frequency types, and the reverse for the Pushee (blue). This effect grows more pronounced moving upward across the rows, as discriminability increases on average.
When average discriminability is sufficiently high and high-frequency types are sufficiently more discriminable than low-frequency types (i.e. sufficiently close to the
upper-right panel), the model generates robust frequency effects resembling those seen empirically. For discussion of the reverse effects seen when average dis-
criminability is low and high-frequency types are not much more discriminable than low-frequency types (i.e. close to the lower-left panel), see Appendix B. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6.1. General predictions for frequency effects

Unlike previous exemplar-based models of word frequency effects in
sound change (Pierrehumbert, 2001, 2002), our model successfully
generated different kinds of word frequency effects in different kinds of
changes. This success follows from the conception of sound change not
merely as the iteration of articulatory biases in the speaker, but rather
as the result of balancing emergent forces that stem from both the
speaker and the listener, where words of different frequencies are
crucially assumed to be differentially sensitive to the perceptual forces
in the listener. The force-balancing conception of sound change is en-
tirely general, allowing the model to make predictions for word fre-
quency effects in sound changes beyond the three cases examined here.

The case studies captured by our model can be united under con-
sideration of how each category’s change affects its discriminability.
When the change has no impact on discriminability – i.e. when the
realization of a phoneme drifts phonetically but does not encroach on
the acoustic territory of another phoneme – then words of all fre-
quencies are expected to change at the same rate, as in Manchester
English /t/-glottaling. When the change acts to decrease discrimin-
ability for a category – i.e. when the realization of a phoneme becomes
acoustically more similar to that of another phoneme – then high-fre-
quency words are expected to change at a faster rate than low-fre-
quency words, as in New Zealand English /t/-tapping. Finally, when the
change acts to increase discriminability for a category – i.e. when the
realization of a phoneme becomes acoustically less similar to that of
another phoneme – then high-frequency words are expected to change a
slower rate than low-frequency words, as in /ɛ/-raising in the New
Zealand English short front vowel shift.

By considering the impact on discriminability in other kinds of
regular sound change, our model generates a typology of predictions22

for word frequency effects on rates of change (see the first column of
Fig. 10). We believe that the clarity of the predictions, combined with
the interesting ways in which they differ for different kinds of sound
change, provides a clear and motivated path for future work. Indeed,
testing the model’s predictions in full will require many empirical stu-
dies (see Appendix C), using existing and future corpora of sufficient
density and time-depth.23

The predictions of our model are particularly interesting because
they fit the existing empirical results more closely than those of other
approaches. As previously stated, empirical results aligns better with
our model’s predictions than with the Frequency Actuation Hypothesis
(FAH Bybee, 2002; Phillips, 1984),24 which draws different frequency
effects based on the differentiation between articulatory biases and
lexical analogy. Empirical results also align better with our model than
with a plausible alternative inspired by the FAH (described below),
which draws different frequency effects based on the differentiation
between articulatory biases and dispersion. In what follows, we work
through the logic underlying these three approaches to generate pre-
dictions for word-frequency effects in various different kinds of sound
change, which we compare schematically in Fig. 10.

As discussed in Section 1, the FAH makes a distinction between

physiologically motivated changes at the surface phonetic level, which
are driven by articulatory biases and assumed to affect high-frequency
words fastest, and non-physiologically motivated changes at the level of
phonological grammar, which are driven by lexical analogy and as-
sumed to affect low-frequency words fastest. While intuitively attrac-
tive, this distinction does not make clear predictions for all kinds of
sound change. For example, the pushee in a push chain may be argued
to move in response to the same articulatory bias that moves the
pusher, or in response to dispersive pressures from perception. If the
movement is due to articulatory bias, then the FAH predicts a high-
frequency advantage, but if it is due to dispersive pressures, then it is
unclear what the FAH predicts, as such pressures are based in neither
articulation nor analogy. Similarly, sound changes such as merger affect
both surface realizations and the phonological grammar and may be
driven by articulatory biases or lexical analogy. In such cases, it is
unclear whether the FAH predicts a high- or low-frequency advantage.

How can we make clearer predictions than the FAH, while main-
taining its core claim that high-frequency words change faster than low-
frequency words in physiologically motivated changes and slower in
non-physiologically motivated changes? The following alternative ap-
proach represents one plausible attempt to do so. Let us assume, as in
our established model, that a phoneme category may participate in
regular sound change only due to articulatory biases or due to dis-
persive pressures, and that the number of categories subjected to ar-
ticulatory biases should be minimized. Thus, for example, the pusher in
a push chain moves due to articulatory biases, but the pushee moves
due to dispersive pressures. Let us further assume that articulatory bias
– a physiological motivator of sound change – affects high-frequency
words fastest, while dispersive pressures – non-physiological motivators
of sound change – affect low-frequency words fastest. The result is an
approach that assumes that sound change occurs in response to pres-
sures from both the speaker and the listener, like our model, but that
prioritizes the speaker over the listener, unlike our model. Because any
sort of sound change must be motivated somehow – whether by biases in
production or by pressures from perception – this approach would
predict that every sound change should show some word frequency
effect. It would predict high-frequency advantages whenever a pho-
neme is subject to a production bias, and low-frequency advantages in
all other movements.

As shown in Fig. 10, the proposed alternative approach makes the
same predictions as our model for push chains and mergers, and both
are able to account for the observed word frequency effects in /t/-
tapping (Hay & Foulkes, 2016) and /ɛ/-raising (Hay et al., 2015) in
New Zealand English. We take this observation as support for the
general usage-based framework that both approaches take, in which
regular sound change occurs in response to forces from both speakers
and listeners, due to both articulatory biases and dispersive pressures.
However, the predictions differ for phonetic drift, and the empirical
observations from /t/-glottaling in Manchester English align with our
model’s prediction. We take this observation as initial support for our
model over the alternative, and correspondingly for treating the listener
rather than the speaker as the driver of word frequency effects in reg-
ular sound change. Finally, the predictions completely oppose one an-
other for pull chains and splits, but we lack the data at present to test
which one is correct. We leave it to future work to test these differing
predictions.

6.2. Computational modeling and sound change

The computational model developed in this paper is a significant
contribution to the field, both as crucial support for the centrality of the
listener to regular sound change, and as an object in its own right. As
outlined below, our model has allowed us to remove gaps and un-
certainties in predictions by ensuring that they are holistic and in-
ternally consistent, to hold intuition up to scrutiny by putting it on a
formal foundation, and to clarify the causal relations between

22 Of course, the general predictions of our model are not without limitations;
for full discussion, see Appendix C. In addition, model simplifications mean that
it cannot be applied to all sound changes; see Appendix A.1.
23 Within such a corpus, an appropriate analysis could investigate any pho-

netically gradual change, provided that it aggregates over the entire lexicon.
The crucial investigation would be of the statistical interaction between word
frequency and time in the prediction of acoustic quality, representing effects of
word frequency on rates of change.
24 It is difficult to make a direct comparison between the predictions of the

present model and those of the FAH, since they concern different properties of
change (rate versus actuation). To facilitate comparison, we assume neutral
initial conditions, i.e. no relevant differences based on word frequency before
the onset of the change.
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assumptions and predictions. To enable future research to share these
benefits, we have made the code for our model available as an online
supplement to this paper, together with documentation for how to use
it.

Firstly, computational modeling ensures that predictions are holistic
and internally consistent. In our model, all sound change is under-
pinned by movement of exemplars due to forces based in the speaker
and the listener, and word frequency effects are driven by listener-
based forces, in entirely general ways. Since every kind of sound change
can be conceived of in relation to these forces, the model makes clear
(probabilistic) predictions for every kind of sound change (modulo the
limitations discussed in Appendix C). The same is not true of previous
hypotheses that have not been implemented in computational models,
such as the FAH (see Section 6.1). Because the FAH only addresses
sound changes caused by articulatory biases or lexical analogy, it does
not extend to changes which do not seem to be caused by either (e.g.
the pushee in a push chain), and it makes unclear predictions for
changes which could plausibly be caused by both (e.g. merger).

Because our model is a formal implementation, it allows us to hold
intuition up to to scrutiny. For example, in Section 4.2, we showed that
our model does not support the widespread intuition that exemplar-
based models always predict high-frequency words to change fastest in
response to production biases (Abramowicz, 2007; Bermúdez-Otero
et al., 2015; Dinkin, 2008; Tamminga, 2014). This intuition relies in
part on a conflation of type frequency and category frequency. We re-
present types and categories at separate levels, making it clear that type
frequency affects not only rate of production, but also density of ex-
emplar distribution. These two effects counteract one another in de-
termining how quickly the type moves in response to bias (see also
Section S5.2 of the Supplementary Materials for discussion from a
mathematical point of view).

Finally, our model has allowed us to clarify the causal relations
between assumptions and predictions. By showing that the model pre-
dicts different frequency effects with the assumption of a high-fre-
quency discriminability advantage (Section 5.5) than without it (Sec-
tion 5.2), we have established that word frequency effects on rate of
change can be causally related to word frequency effects on perception.
The model also enables us to establish the influence that changing
certain assumptions would have on predictions. For example, there are
at least two possible mechanisms through which the existence of

asymmetries in discriminability evaluation can follow from the ex-
emplar-based architecture of the model (i.e. under a constant dis-
criminability threshold, ); in Section S1.3.1 of the Supplementary
Materials, we outline these different mechanisms and show how they
make different predictions for asymmetries in typicality evaluation.

6.3. Listener-driven sound change

Our model is formulated as a usage-based production-perception
loop, where the representations that are drawn upon for production are
also updated through perception. Within such a system, the diachronic
trajectory of a language is formed from the way in which the language
is used at different points in time, and thus shaped by the forces (social,
cognitive, physiological, etc.) that act during any synchronic linguistic
exchange (Beckner et al., 2009). More generally, the interdependence
between the production and perception systems predicts that any sort of
synchronic asymmetry in the way speech is produced or perceived has
the potential to create asymmetries in the pattern of diachronic change,
provided it is sufficiently widespread, robust, and persistent. By con-
sequence, it opens the possibility that the listener could drive regular
sound change.

The notion that the listener could be important for sound change is
not new, but our approach to it is. Ohala (1981) claimed that the lis-
tener could be a source of sound change by under- or over-applying
perceptual compensation for coarticulation and thus misperceiving one
sound as another. For example, the listener could incorrectly compen-
sate for coarticulation that wasn’t present in the realization of /yt/ as
[yt] and thus reconstruct it as /ut/. There are three main differences
between Ohala’s model and the model we present here. Firstly, Ohala’s
model represents sound change as a change in the phonological re-
presentation of words (e.g. /yt/ changing to /ut/), while our model
represents sound change as a change in the phonetic realization of a
phoneme (e.g. /y/ changing its realization from [y] to [u]). Conse-
quently, Ohala’s model is not designed to capture the gradient changes
that are observed in regular sound change, while our model is. Sec-
ondly, Ohala’s model attributes the influence of the listener to mis-
perceptions, while our model attributes it to memory disadvantages of
acoustically ambiguous tokens. While listeners certainly can mis-
perceive one sound as another, especially in the presence of noise
(Miller & Nicely, 1955), we do not believe that misperception is as

Fig. 10. Comparison of the qualitative predictions of
our listener-based model to those of the Frequency
Actuation Hypothesis (FAH; Bybee, 2002; Phillips,
1984) and those of our alternative proposal (see
text). Arrows indicate movement over time, and
stars indicate movement due to phonetic biases. Red
indicates a high-frequency advantage, blue indicates
a low-frequency advantage, and black indicates no
frequency advantage. In the FAH predictions, not
every case is clear-cut (marked by ?; see text), in-
troducing cases where there could be a high-fre-
quency advantage or no frequency advantage
(brown, no star) or where there could be a high-
frequency advantage or a low-frequency advantage
(purple, star). The predictions of our listener-based
model and the proposed alternative are identical for
push chains and mergers, but different for phonetic
drift, pull chains, and splits. (For interpretation of
the references to color in this figure legend, the
reader is referred to the web version of this article.)
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widespread in practice (especially given context) as would be required
for it to really drive sound change (see Section S3.4.3 of the
Supplementary Materials for related simulations showing that mis-
perception of minimal pairs is insufficient to generate robust category
interaction). Finally, in Ohala’s model, a sound change that spreads
across the lexicon (outside of the conditioning environment) must do so
via analogy – meaning that the listener is a source of sound change, but
does not drive sound change across the lexicon. In our model, the
speaker is the source of sound change (via biases in production), but the
listener drives it, by forcing categories to interact (via the discrimin-
ability evaluation).

Some models of language usage acknowledge the interdependence
of production and perception while still placing primary focus on the
speaker. Such models typically involve a forecasting component, ac-
cording to which speakers shape their productions to facilitate com-
prehension of a listener (e.g. Buz et al., 2016; Lindblom, 1990).25 While
consistent with all we have demonstrated for the listener-based model,
these speaker-based, listener-oriented models have two primary dis-
advantages. Firstly, it is not clear that a listener-oriented component is
consistently active; for example, while Snedeker and Trueswell (2003)
observe speakers’ use of prosodic cues covarying with – and thus po-
tentially disambiguating – prepositional phrase attachment, Arnold
et al. (2004) do not. Similarly, Bard et al. (2000) observe that speakers
reduce intelligibility when repeating referring expressions, even when
they know that the listener has no knowledge of the referent. Secondly,
listener-orientation has been criticized as teleological (e.g. Wedel,
2006). By contrast, the present listener-based model is non-teleological:
change occurs not because of any desire to speak in an acoustically
unambiguous manner, but because instances of ambiguous speech are
disfavored in memory and thus tend not to be replicated, following
entirely passive processes.

Our results have shown that a listener-based approach to sound
change explains empirical patterns that cannot be satisfactorily cap-
tured by existing speaker-based approaches. By locating synchronic
word frequency-based asymmetries in the perceptual system, we have
predicted frequency effects on rate of change that differ depending on
the kind of sound change in action. Our predictions capture empirical
results from /t/-glottaling in Manchester English (Bermúdez-Otero
et al., 2015) and /t/-tapping (Hay & Foulkes, 2016) and /ɛ/-raising
(Hay et al., 2015) in New Zealand English, which, to our knowledge,
have no other joint explanation in the literature. Of course, there are
many perceptual asymmetries that we have not included in our model,
and our approach leads us to expect that they may also have implica-
tions for patterns of sound change.

In sum, the listener-based approach is both powerful and flexible.
We take the success of the approach in predicting empirically-observed
effects of word frequency on rate of change to support the claim that the
listener is central to sound change. We do not intend this to claim imply
that the speaker is unimportant, but rather that the speaker cannot be
the sole primary influence on sound change. We acknowledge that as-
pects of production are widely attested and accepted to vary with word
frequency, at least in the case of reduction (e.g. Bell et al., 2009).
However, given an exemplar-based production-perception loop, it is not
necessary to assume that word frequency-based asymmetries in pro-
duction are responsible for generating effects of word frequency on rate
of change, as such effects can follow straightforwardly from frequency-

based asymmetries in perception.

7. Conclusion

We have presented an exemplar-based computational model of
regular sound change and demonstrated that it generates appropriate
single-category movement and two-category interactions, reflecting key
(frequency-independent) properties of real sound changes. In parti-
cular, the model is capable of maintaining substantial overlap between
phoneme category distributions, owing in part to the novel inclusion of
an experimentally-supported typicality evaluation in perception.

We have then shown that the model’s assumption that the listener
plays a central role in sound change allows it to predict different effects
on word frequency on rate of change in different kinds of sound change,
which match all of the empirical results that exist at the time of writing
(Bermúdez-Otero et al., 2015; Hay et al., 2015; Hay & Foulkes, 2016).
In changes that do not affect the acoustic ambiguity of the phoneme
undergoing change, the model predicts all words to change at the same
rate, owing to the novel de-confounding of word frequency and pho-
neme frequency. In changes that act to increase the acoustic ambiguity
of the phoneme undergoing change, the model predicts high-frequency
words to change at a faster rate than low-frequency words, and vice
versa for changes that act to decrease the acoustic ambiguity of the
phoneme undergoing change. These predictions follow from the in-
corporation of an experimentally-supported perceptual asymmetry,
under which high-frequency words may be more robustly recognized
than low-frequency words in the face of acoustic ambiguity. Our lis-
tener-based model thus shows how word frequency-based asymmetries
in perception can generate word frequency effects on rate of sound
change, without similar asymmetries in production, which differ sys-
tematically for different kinds of sound change.

The study of regular sound change is becoming increasingly rig-
orous with the availability of collections of speech recordings that span
long periods of (real or apparent) time. The combination of this em-
pirical data with appropriate computational modeling will be central to
testing predictions and hypotheses about the connections between
speech perception and regular sound change. Under the model we have
presented here, we expect future studies of empirical data to demon-
strate connections between word frequency and rate of sound change,
and we expect these connections to differ systematically depending on
the implications of the change for perceptual discriminability.
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Appendix A. Simplifications in modeling decisions

In order to develop a thorough understanding of the fundamental dynamics of our model, we made a number of necessary simplifications. In this
section, we describe those simplifications and their implications for model behavior and applicability to empirical sound change data.

A.1. The exemplar space

Our model uses an exemplar space that is subject to three assumptions: (i) it contains just one or two categories; (ii) it consists of a single
perceptual-acoustic dimension; and (iii) it extends without bound, with all areas being equally “hospitable” for exemplars. Relaxing any of these
assumptions would introduce complexities that are beyond the scope of the present work.

Relaxing the first assumption – allowing more than two categories into the model – would cause the predicted frequency effects to depend upon
the precise initial configuration of categories. For example, in a system that includes three categories along a single dimension, different effects will
be predicted based on whether the middle category begins closer to the first or last category.

Relaxing the second assumption – expanding to a multi-dimensional exemplar space – would cause the predicted frequency effects to depend
upon the alignment of the category trajectories. For example, if the Pusher is moving horizontally, different frequency effects will be predicted based
on whether the Pushee also moves horizontally or instead moves with a vertical component.

Finally, relaxing the third assumption – adding bounds to the exemplar space that repel nearby exemplars, e.g. via physical limits of articulation –
would cause the predicted frequency effects to depend upon the role of those bounds in the change. For example, in a two-dimensional system,26

different frequency effects will be predicted based on whether Pushee movement along a certain dimension is caused by repulsion from the Pusher or
from the bounds of the space.

As a result of these assumptions, our present model is only applicable to sound changes that can be approximated by the movement of one or two
categories along a single trajectory. For some complex sound changes, it is possible to identify simple components that can be approximated in this
way. For example, the New Zealand short front vowel shift as a whole (Hay et al., 2015) cannot be captured by our present model, as it involves at
least three categories moving around the boundaries of a two-dimensional space. But within this complex change, one component – /ɛ/-raising – is
amenable to treatment by our model, as it involves movement of a category (/ɛ/) along the same trajectory as its pusher (/æ/) but not its pushee (/ɪ/
). We plan extension of the model to other components of the change in future work.

A.2. Minimal pairs

The simulations presented in the main paper do not include minimal pairs, under the claim that minimal pairs alone are unlikely to drive the
effects that we are concerned with modeling. We support this claim in two ways: by showing that minimal pairs are in a minority in empirical sound
changes, and by showing via simulations that a minority of minimal pairs is neither sufficient nor necessary to generate behavior of interest in a
model of sound change.

In the interaction of /æ/ and /ɛ/ in the New Zealand short front vowel shift, only 8.2% of words (164 of 2000 unique wordforms) have a relevant
non-proper-noun minimal partner that also appears in the ONZE corpus. These minimal pairs are distributed across the frequency range and account
for 21.1% of the total tokens (11,620 of 55,200) analyzed by Hay et al. (2015). Since the vast majority of the New Zealand English /æ/-/ɛ/ data
(words and tokens) correspond to words without a relevant minimal partner,27 we argue that the properties of the vowel interaction are likely to be
general, holding across words both with and without relevant minimal partners.

We further support this argument with simulations, detailed in the Section S3.4 of the Supplementary Materials. If we assume that a minority of
minimal pairs alone are responsible for generating phoneme category interaction, our model produces little interaction and no word-frequency
effects. Conversely, if we assume that phoneme category interaction is general, i.e. not generated solely by minimal pairs, our model produces
substantial interaction and word-frequency effects. Under this assumption, the model produces the same qualitative results independent of whether
minimal pairs are included or excluded. By excluding minimal pairs, we thus do not exclude any behavior of interest from our model, and we
guarantee that the predictions of our model are general.

A.3. Frequency

Our model uses a representation of type frequency that is based on log-transformed word frequencies in a large corpus (see Section S1.1 of the
Supplementary Materials for motivation and discussion). In addition to using this representation for modeling perceptual processes (as is standard),
we use it for modeling rates of production. This treatment might seem inappropriate because, in the real world, words are produced according to
their frequency rather than their log-frequency. However, it is not, because our model is fundamentally concerned only with productions that are

26 In a one-dimensional system, a bounded exemplar space would cause movement to cease eventually, but would not otherwise interact with frequency effects.
This lack of interaction allows our model to be applied to movement that eventually ceases – as in /t/-glottaling and -tapping – even though movement never actually
ceases in simulations.
27 The number of words in the dataset with potential relevant non-proper-noun minimal partners (as assessed by the Unisyn lexicon (Fitt, 2000)) that happened not

to be mentioned (e.g. through not being of the appropriate register or through being extremely low-frequency) is capped at 15.4% (308), accounting for no more than
37.1% (20,501) of the tokens. Even in this more extreme interpretation of the data, minimal pairs are in a minority.
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assessed for storage in memory, which need not include all words in a stream of speech (see also Landauer, 1986, for a model of memory in which not
every input is stored). Similarly to recent subsampling approaches in Natural Language Processing (Mikolov et al., 2013), we assume that listeners
may filter out (or otherwise downweight) some instances of high-frequency words due to their high predictability. We take the liberty not to model
such filtered instances for the sake of computational efficiency.

A.4. Exemplar storage and strength

Our model assumes that a stored exemplar overwrites another, and thus that all exemplars have a fixed strength that does not decay over time.
This treatment is different to the standard one in exemplar dynamics models, in which there is no overwriting, but exemplar strength decays
exponentially over time (Ettlinger, 2007; Pierrehumbert, 2001; Tupper, 2015; Wedel, 2006, 2012; Wedel & Fatkullin, 2017). However, the difference
is superficial; averaged over many runs, the expected behavior of our random-overwriting treatment is equivalent to that of a special case of the
standard treatment (see Sections S5.2.1–5.2.2 of the Supplementary Materials).

Our treatment affords us a computational convenience, as the number of exemplars in each category remains fixed over time. It also has the
consequence that one category cannot “leech” off the other, driving it to extinction. While previous work (e.g. Pierrehumbert, 2001; Tupper, 2015)
has used category extinction via leeching as a model for phoneme merger, Wedel and Fatkullin (2017) show that such leeching behavior is naturally
avoided by even partial grounding of production rates in the lexicon, meaning that it may not be entirely appropriate as a model of merger. In the
absence of leeching, we treat merger as the result of extreme overlap between categories (Sóskuthy, 2013; Wedel, 2004, 2012), following the
assumption that such overlap may trigger reanalysis of the category system cross-generationally (Blevins, 2006) or updating of lexical entries within
a generation.

Appendix B. Interactions between production and storage

Our simulations contained as many exemplars of high-frequency types as exemplars of low-frequency types (see Section S1.1 of the
Supplementary Materials). In the absence of perceptual asymmetries, the high- and low-frequency sub-distributions of exemplars are therefore
expected to evolve identically. However, that is not what happened, for both the single-category simulations and the two-category simulations. In
this section, we describe the unexpected frequency effects, and show how they are explained by a side-effect of our assumptions about production
and storage.

Our single-category simulations revealed an effect of type frequency on the evolution of category width. Though the category as a whole
maintained its width throughout the simulations, the sub-distribution corresponding to high-frequency types narrowed and the sub-distribution
corresponding to low-frequency types widened. We demonstrate this result in Fig. B.11.

Similarly, our two-category simulations with the basic model (i.e. without frequency-sensitive discriminability threshold) revealed an effect of
frequency on rate of change that was the opposite of that seen empirically (Fig. 8). Low-frequency types changed fastest in the Pushee, and high-
frequency types changed fastest in the Pusher.

Both of these results are conditioned by perceptual forces: category width is conditioned by the typicality force, and position in two-category
interactions is conditioned by the discriminability force. In both cases, the high-frequency sub-distribution has been more affected by the relevant
force than the low-frequency sub-distribution. In other words, high-frequency types are more sensitive to perceptual forces that low-frequency types.

High-frequency types have increased sensitivity to perceptual forces in general as an indirect result of an interaction between our assumptions
about production and storage. Recall that the selection of an initial target for a token proceeds by copying the acoustic value of an exemplar of the
given type (Section 3.2.1), and that a token is unlikely to be stored if it falls in a perceptually-disadvantaged (i.e. low-discriminability or low-
typicality) area of the exemplar space (Sections 3.2.6 and 3.2.7). Consequently, an exemplar in a perceptually-disadvantaged area (e.g. an atypical
exemplar) is less likely to generate a token that will overwrite an exemplar in a perceptually-advantaged area (e.g. a typical exemplar) than vice
versa. In this way, the target-copying production mechanism provides escape routes from perceptually-disadvantaged areas of the exemplar space,
yielding boosts to perceptual forces. An exemplar of a high-frequency type falling in a perceptually disadvantaged area has more escape routes than a
similar exemplar of a low-frequency type because its representation consists of more exemplars, and thus gets more boosts to the perceptual forces.

We emphasize that this sensitivity difference is a side-effect of model assumptions and should not be interpreted as theoretically meaningful.
None of our key results rely on it in any way.

Appendix C. Limitations on testing model predictions

Our model predicts a typology of word frequency effects on rates of sound change (Section 6.1), which can be tested with corpus data. However,
these predictions are not without limitations. In addition to the limitations already discussed in Appendix A.1 on the kinds of changes to which the

Fig. B.11. Results of simulations with a single category ( = 0.8) subject to varying degrees of bias, illustrating differences between low-frequency (solid) and high-
frequency (dashed) types. For all degrees of bias, the category distribution widens for low-frequency types, but narrows for high-frequency types. Category skewness
increased with bias ( ), causing apparent category width also to increase.
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predictions are applicable, there are two main limitations on the ways in which the predictions can be tested. In this section, we describe these
limitations.

The first limitation is that the force-balancing conception ultimately concerns the eventual behavior of a system, which cannot be directly
investigated in a corpus. The model predicts the relative positions of high- and low-frequency types upon converging to a stable equilibrium state
where all forces are balanced28; we illustrate how this prediction works in Fig. C.12. In a corpus, one cannot directly test for convergence to such an
equilibrium state because of the inherent difficulty of saying when a change has reached stability, due to the existence of substantial variation.
Consequently, the model’s predictions can only be compared to corpus results indirectly. We have focused our exposition of the model on the effect of
type frequency on rates of change, which can be observed in corpora as a statistical interaction between word frequency and phoneme realization
(Hay et al., 2015). The effect of frequency on rates of change is a fairly robust indirect prediction of the model that holds across most initial
conditions (see Fig. C.12); however, it may not be appropriate in some (extreme) circumstances, depending on the initial conditions.

The second limitation is that, because the model is stochastic in nature, its predictions reflect what is expected on average for a particular kind of
change, not what actually happens in any instance of that change. The model’s predictions are tendencies that should be observable across instances
of change, and thus can only truly be tested by analyzing many different corpora. Even under the model settings that generated the strongest
frequency effects in the exploration presented here (top-right panel of Fig. 9), only 70% of our simulations yielded the corresponding qualitative
pattern of results, some of which represent extremely small effect sizes. Thus, the existence of a certain number of null or even conflicting results
from empirical studies is not inconsistent with the model, but we expect that, over many studies, more results will show the predicted qualitative
patterns than will show any other pattern. Similarly, the model’s predictions for frequency-based differences across types within a particular change
are also tendencies. The model does not predict that every pair of high- and low-frequency types within a category will exhibit the relationship that is
expected for the given change; rather, the relationship is only expected to manifest when aggregating over the entire lexicon (or a sufficiently large
representative sample).

Appendix D. Supplementary material

Supplementary materials and model code associated with this article can be found, in the online version, at https://doi.org/10.1016/j.cognition.
2019.01.004.

Fig. C.12. Illustration of how the model predictions
work, assuming that the sound change is causing
increase along some perceptual-acoustic dimension.
(A) illustrates change in the difference along the
perceptual-acoustic dimension between high- and
low-frequency subdistributions of the category over
time, while (B) illustrates potential trajectories of
sub-distribution movement that could generate the
patterns in (A). Both illustrations include possibi-
lities from different initial conditions (matched
colors), i.e. different relative positions of the high-
and low-frequency subdistributions at the beginning
of the change. The model predicts eventual con-
vergence to a fixed difference (dotted black line in
(A); fixed separation of trajectories in (B)). This
prediction is not robustly related to a prediction of
which types are “ahead” in the change at any given
point in time. Half of the initial conditions (orange,
blue) have high-frequency types ahead (above the
dashed gray line in (A); higher value of the high-
frequency trajectory in (B)) at all points in time,
while the other half (green, purple) have low-fre-
quency types ahead at first and high-frequency types
ahead later. The model’s prediction is more robustly
related to a prediction of differences in rates of
change. Most of the initial conditions (blue, green,
purple) have high-frequency types change faster
than low-frequency types (positive slope in (A);
steeper slope of the high-frequency trajectory in
(B)). (For interpretation of the references to color in
this figure legend, the reader is referred to the web
version of this article.)

28 In the eventual force-balance equilibrium state, the categories are still moving, but the movement of types of different frequencies neither accelerates nor
decelerates, like a car at stable cruising speed. Because the model assumes that the representations (e.g. lexical and phonological inventories) and forces (e.g.
production bias) are constant for all time, it is always driven toward a single equilibrium state, even if this state is not reached within the specified iterations. In real
sound systems, the representations and forces may change readily, meaning that “convergence” never actually occurs, and instead the expected frequency effects
change with the system.
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